
1 February 1998 Delphi Informant

February 1998, Volume 4, Number 2

Delphi 3 ActiveX
A Handy Introduction

Cover Art By: Tom McKeith

ON THE COVER
5 Delphi 3 ActiveX � Dan Miser
Just in case you don’t know, Delphi 3 is a major player in ActiveX devel-
opment. Mr Miser demonstrates many of Delphi 3’s capabilities in this
area, including: importing ActiveX controls, converting VCL controls into
ActiveX controls, creating custom ActiveX controls, and more.

FEATURES
11 Informant Spotlight
ActiveX Scripting � Tom Stickle
With ActiveX scripting, developers finally have a platform for adding
standard scripting support to their applications. Mr Stickle shows us how
to employ the tool from Delphi 3.

18 DBNavigator
Insightful Delphi � Cary Jensen, Ph.D.
So you think you know the Delphi Code Editor? Odds are you’ll be
pleasantly surprised by an item or two uncovered by Dr Jensen in this
in-depth examination of Delphi 3 Code Insight.

23 OP Tech
What’s in the Package? � Adam Chace
Its implementation of packages is another important aspect of Delphi 3.
Mr Chace describes them, puts them in perspective, and spotlights the
development possibilities.

27 On the Net
Picture This on the Web � Keith Wood
Mr Wood generates a CGI program with Delphi 3, using its new Web
module components to create a CGI program that delivers pictures
from a database to a Web page.

REVIEWS
33 Abbrevia and LockBox

Product Review by Alan Moore, Ph.D.

39 High Performance Delphi 3 Programming
Book Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
4 Newsline
41 File | New by Alan Moore, Ph.D.

2 February 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

SureHand Software Offers ViCiouS Pro

SureHand Software intro-

duced ViCiouS Pro, a ver-
sion control system that
enables recognition, cus-
tomization, and creation of
logical file families. ViCiouS
Pro includes file family defi-
nitions for C++Builder,
Delphi projects, Delphi
forms, Paradox tables, and
dBASE tables.

Users have control over def-
initions for keyword expan-
sion on a per-file extension
basis, with the ability to
establish standard history
blocks for logging com-
ments. ViCiouS Pro also
supports keyword expansion
within incoming and outgo-
ing files.
ViCiouS Pro supports single-

or multiple-user environments.
One copy of common units
and forms may be shared
between multiple projects.

ViCiouS Pro integrates
Business Solutions Introd
directly with Delphi and
C++Builder. Programmers
may also access the version
control features by using the
Archive Explorer. The Admin
Tool provides facilities for
defining users, file families,
and keyword definitions.
uces Client/Server Version
ViCiouS Pro is available in
16- and 32-bit versions.

SureHand Software
Price: US$76 per user license, with
discounts for multiple users.
Phone: (314) 963-1935
Web Site: http://www.surehand.com
 of Purchase Manager

Business Solutions, Inc.

announced Purchase
Manager 2.0, a client/serv-
er version of the company’s
purchasing management
system. Written in Delphi,
it runs against the Oracle
database, and serves medi-
um to large organizations.

Purchase Manager handles
regular and quick
requisitions, pur-
chase orders, con-
tract orders and
releases, RFQ bid-
ding, and shipment
orders for raw
materials, spare
parts, and services.
It also includes a
comprehensive
inventory manage-
ment system, and
easily interfaces
with existing
accounts payable
and financial sys-
tems.
Complete Delphi source
code, implementation assis-
tance, and consulting are
also available. The source
code version includes the
BSI Guardian Application
Security System, also writ-
ten in Delphi. Although
Purchase Manager is writ-
ten for Oracle, its architec-
ture allows conversion to
any BDE-supported data-
base.

Business Solutions, Inc.
Price: US$10,000, plus US$500
per user; additional US$10,000 for
source code.
Phone: (218) 384-4210
Web Site: http://www.bsi-net.com
Blinkinc Ships Shrinker 3.2
BBlliinnkkiinncc announced the

release of SShhrriinnkkeerr 33..22, a utility
that compresses and transpar-
ently decompresses Windows

and real-mode DOS programs.
Shrinker 3.2 compresses 16-

and 32-bit Windows programs
and resources, including EXEs,
DLLs, DPLs, OCXs, and ActiveX
controls. This version includes
support for long filenames and

an enhanced Windows user inter-
face. Shrinker 3.2 supports
Windows 3.1, Windows 95,

Windows 98, and Windows NT
3.51 and 4.0.

Any EXE, DLL, DPL, or OCX
compressed with Shrinker will
transparently decompress itself
into memory at run time. By
reducing the amount of data

transmitted, and decompressing
the program on the local work-

station at run time, Shrinker
minimizes LAN, WAN, and

Internet traffic.
For pricing and information, call

(804) 784-2087or visit
http://www.blinkinc.com.

http://www.blinkinc.com
http://www.surehand.com
http://www.bsi-net.com

3 February 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Quality Software Components Releases GP-Version 3.5

Quality Software

Components, Ltd.
released GP-Version
3.5, a change control
system for Delphi and
C++Builder. This ver-
sion includes user-
defined file groupings,
which allows users to
define files that should
be archived as a single
entity and specify
what file types are
dependent on others.
With Delphi, GP-
Version recognizes
which files must
remain writeable when
checked in.

GP-Version also allows
users to define multiple
configurations, allowing a
different set-up for each
client.

The entire functionality of
Skyline Tools Releases Im
the 32-bit GP-Version is
defined in a single .DLL,
and doesn’t require any
third-party tools. An API
defined into this .DLL is
available upon request. This
allows developers to add
version control function-
ageLib Corporate Suite 3
ality to any file-based appli-
cation.

Quality Software
Components, Ltd.
Price: US$125 per user
E-Mail: info@qsc.u-net.com
Web Site: http://www.qsc.u-net.com
.0

Skyline Tools announced

version 3.0 of ImageLib
Corporate Suite, a document
imaging development package
that features over 40 image
manipulation and correction
tools.
The ImageLib Corporate

Suite is compatible with
Delphi, C++Builder, Borland
C++, Microsoft Visual C++,
Visual Basic, and others,
allowing developers to create
desktop, database, Internet,
and multimedia applications.
The suite supports JPEG,

GIF, PNG, PCX, BMP,
Baseline TIFF, TIFF3/CITT,
TIFF4/CITT, multi-page
TIFF, TIFF Packbits, TIFF
LZW, Kodak Photo-CD,
TGA, DFX, ICO, EPS, and
other formats.
The suite offers OCR fea-

tures, as well as image-annota-
tion capabilities, such as high-
lighting, “paste its” (sticky
notes), labels, arrows, notes,
polygons, circles, and squares.
The zoom, scroll, and pan fea-
tures offer control when mov-
ing across enlarged images.
Version 3.0 includes a

TWAIN Manager, which
scans and stores images in a
multi-page TIFF in one step,
and supports all TWAIN-
compliant digital cameras.

In addition, the suite
includes the Thumbnail Image
Manager and point-and-click
image-correction effects, such
as brightening, contrast,
gamma correction, color
reduction, and rotation, as
well as special effects filters
(mosiac, page curl, wave, tran-
sitions, and more). It also
includes a built-in video frame
grabber and the ImageLib
WebKit.

Skyline Tools
Price: US$599
Phone: (818) 766-3900
Web Site: http://www.imagelib.com
EFD Announces
HyperString 2.0 for Delphi

EEFFDD SSyysstteemmss announced
HHyyppeerrSSttrriinngg 22..00, a comprehen-
sive library of string functions
designed for Delphi’s 32-bit

dynamic string type.
HyperString offers over 200

functions, both high- and low-
level, with many coded in hand-

optimized assembler. All functions
are documented in WinHelp for-

mat for integration into the
Delphi online Help system, pro-

viding access during coding.
Included in the HyperString

function set are the usual array
of search and edit routines,

along with hashing, encryption,
compression, fuzzy-matching,

numeric expression evaluation,
and a unique implementation of
dynamic arrays using dynamic

strings as containers. Token rou-
tines provide parsing of

HTML/XML strings, and support
the creation of hierarchical data

structures inside strings.
For more information visit

http://efd.home.mindspring.com.

http://efd.home.mindspring.com
http://www.qsc.u-net.com
http://www.imagelib.com

4 February 1998 Delphi Informant

News
L I N E

February 1998

Borland Announces Delphi Enterprise

Borland Reports Second Quarter
Scotts Valley, CA — Borland
announced Delphi
Enterprise, an integrated
development and middle-
ware solution for corpora-
tions building secure, fault-
tolerant, distributed software
applications. Based on
Delphi development tools
and Entera middleware tech-
nology, Delphi Enterprise
provides a robust, multi-
platform, end-to-end solu-
tion that can support large
volumes of users and data.
Delphi Enterprise allows cor-
porations to deliver enterprise-
class applications that lever-
age their corporate assets,
including investments in
legacy systems, developer
skill sets, infrastructure, and
current business practices.

Delphi Enterprise
includes technical support,
installation, training, and
maintenance contracts, as
Arabic Language Suppor
well as optional enterprise
consulting services.

Delphi Enterprise prices
start at US$45,000, depend-
ing on developer seats and
server configuration. The
product is available directly
t for Delphi 3

SAP Announces Open B
from Borland and through
select Borland partners. For
more information, call
Borland’s direct corporate
sales at (408) 431-1064, or
visit the Borland Web site at
http://www.borland.com.
Scotts Valley, CA —
Borland announced results
for its fiscal year 1998, sec-
ond quarter, which ended
September 30, 1997.
Second quarter revenues
for fiscal 1998 were
US$42,500,000, compared
to US$39,306,000 for the
second quarter of the previ-
ous fiscal year. (Revenues
were up eight percent over
the second quarter of fiscal
year 1997.)

Year-to-date fiscal year
1998 revenues were
US$84,470,000, a nine-

Fiscal 1998 Results
A

percent increase over rev-
enues of US$77,452,000
for the first half of fiscal
year 1997.

Net income for the second
quarter of fiscal year 1998
was US$1,518,000, or
US$.03 earnings per share,
as compared to a net loss of
US$14,310,000 or US$.40
per share for the second
quarter of fiscal year 1997.

Revenues from Borland’s
client/server, enterprise, and
Internet products continued to
grow, making up 55 percent of
total revenues in the second
quarter of fiscal year 1998.

Borland attributes its prof-
itability to continued
updates on existing products,
as well as new products, such
as JBuilder.
Scotts Valley, CA and
Frankfurt, Germany —
Borland announced the
availability of Arabic lan-
guage support for Delphi 3
Client/Server Suite and the
Delphi 2 and Delphi 3 line
of tools. With Delphi Arabic
Enablement for Windows
95, any existing installation
of Delphi 2 or 3 running on
Arabic Windows 95 can be
upgraded to develop full
Arabic applications, includ-
ing Arabic database, report-
ing, and display capabilities.
Delphi Arabic Enablement
for Delphi 2 and 3 is avail-
able from Borland and select
distributors for US$99.
Atlanta, GA — Systems,
Applications, and Products in
Data Processing (SAP) AG
launched the Open BAPI
Network to encourage the free
flow of information among
developers using its Business
Application Programming
Interfaces (BAPI) at customer
sites, partner companies, and
PI Network
within SAP itself. The Open
BAPI Network ensures that
developers building applica-
tions complementary to R/3
have access to information for
BAPI-based development.

For information or to regis-
ter for membership visit the
SAP Web site (http://www.-
sap.com).
Borland Signs Letter of
Intent, Releases C++Builder

Client/Server Suite
Borland signed a letter of intent

with IBM Corp. to jointly develop
and deliver Java development

solutions for IBM AS/400e series
business computers.

Borland and IBM will work to pro-
vide AS/400 developers with inte-

grated solutions for developing Java
applications and applets. The devel-
opment solutions will be based on
Borland’s new JBuilder family of
pure Java development tools.

Borland also released
C++Builder/400 Client/Server
Suite, a C++-based RAD tool
specialized for the IBM AS/400
series of business computers.

Borland’s C++Builder/400 com-
bines native connectivity to the

AS/400, a reusable object-oriented
component library and high

productivity visual design tool.
C++Builder/400 Client/Server

Suite is available from Borland and
authorized Borland/400 business
partners. Prices start at US$3,995.
For more information call (800)

233-2444 or visit http://www.bor-
land.com/borland400/.

International customers can contact
their local Borland office or visit

http://www.borland.com/-
borland400/partner.html.

http://www.borland.com/borland400/
http://www.borland.com/borland400/
http://www.borland.com/borland400/partner.html
http://www.borland.com/borland400/partner.html
http://www.sap.com
http://www.sap.com
http://www.borland.com

5 February 1998 Delphi Informant

On the Cover
Delphi 3 / ActiveX

By Dan Miser

Figure 1: The
Delphi 3 ActiveX
A Handy Introduction

Microsoft has defined a lightweight subset of their OLE technology that is
well suited for the Internet. This technology is called ActiveX. Delphi 3

gives developers the ability to easily use existing ActiveX controls in their appli-
cations, as well as turn their native VCL components into ActiveX controls.
Delphi 3 also provides developers the ability to extend ActiveX controls, and
even create custom ActiveX controls from scratch.
This article demonstrates five aspects of
ActiveX programming with Delphi 3:

importing existing ActiveX controls
converting VCL controls into ActiveX
controls
extending an ActiveX control by adding a
property page
creating custom ActiveX controls
 Import ActiveX Control dialog box.
converting a Delphi form into an
ActiveForm

That’s a lot of ground to cover, so let’s get to
it. (Note: You’ll need Microsoft Internet
Explorer version 3 or higher to access
ActiveX controls on the Web. For Netscape
users, a plug-in called ScriptActive will allow
ActiveX access. It’s available from NCompass
Labs at http://www.ncompasslabs.com.)

Importing an Existing ActiveX Control
Because they’re components, ActiveX con-
trols fit nicely into Delphi’s component-
based development strategy. In fact, Delphi
3 gives you the ability to integrate these con-
trols right into the Delphi IDE. Select
Component | Import ActiveX Control from the
menu to display the list of ActiveX controls
registered on your system. Any control
found in this list can be imported as a
Delphi component.

The following example will demonstrate
how to install an ActiveX control, and how
to use it in the Delphi 3 IDE. To follow
this example, you must have Progressive
Networks’ RealAudio ActiveX control
installed on your system; you can find it at
http://www.real.com/products/player/-
playerdl.html.

http://www.ncompasslabs.com
http://www.real.com/products/player/playerdl.html
http://www.real.com/products/player/playerdl.html

Figure 2: The RealAudio ActiveX control in action.

On the Cover

Figure 3: The ActiveX Control Wizard.
Select Component | Import ActiveX Control, and modify the
dialog box to look like that shown in Figure 1. If you were
to click the Create Unit button, Delphi would generate a
VCL wrapper by reading the type information of the
ActiveX control, and translating it into Object Pascal syn-
tax. The source code would then be saved in the directory
you specified for Unit dir name.

However, because all Delphi 3 components need to be
installed to a package before you can use them in the
Delphi IDE, you should click the Install button. This will
create the unit as previously described, then allow you to
insert the component into a package by using Delphi’s stan-
dard component-installation dialog box. Next, you’ll be
prompted to rebuild the modified package. After recompil-
ing, you can treat the ActiveX control as you would any
native VCL component.

You may have noticed the Add and Remove buttons on this
dialog box. These give you a quick, easy way to install and
remove ActiveX controls without resorting to Regsvr32, or
some other registration utility. Figure 2 shows a RealAudio
component on a form; its Source property is set to a
RealAudio file, and Play is selected from the context menu.
Notice that the file is being played at design time.

Creating ActiveX Controls from VCL Controls
You may be wondering how to create your own ActiveX
control that others may use. Delphi comes to the rescue
again by providing the ability to convert VCL controls to
ActiveX controls. This capability is not restricted to
Borland’s standard VCL controls; you can even convert
your custom VCL controls.

Select File | New | ActiveX | ActiveX Control to run the ActiveX
Control Wizard. This will generate a fully functional imple-
mentation of the ActiveX control, which you can use from
within your Delphi applications. For now, let’s build a sample
ActiveX control based on Delphi’s Calendar control (which
appears on the Samples page of the Component palette).
Modify the ActiveX Control Wizard to look like the dialog
box in Figure 3, and click OK.
6 February 1998 Delphi Informant
Not all VCL controls can become ActiveX controls; to display
a VCL control in the ActiveX Control Wizard, three require-
ments must be met:

The VCL control must descend from TWinControl. This
may force you to alter the parentage of your VCL control,
but there is usually a suitable alternative. For example, if
you’re trying to port a non-visual control to an ActiveX
control, you might consider using TCustomControl as the
ancestor, and provide a simple Paint method.
The VCL control must descend from a control capable of
supporting ActiveX conversion. Most Delphi components
use the RegisterComponents procedure to install themselves
to the Component palette. However, if you don’t want a
control to be converted to ActiveX, you can use the
RegisterNonActiveX procedure to install the component. A
common reason to disallow ActiveX conversion is that the
VCL control references other components. Having
ActiveX controls talk to each other in this manner would
be very difficult, so it’s easier to disallow the conversion
altogether. Delphi’s data-aware controls are a prime exam-
ple of this. Also, registering a control with
RegisterNonActiveX will disqualify that control’s descen-
dent components.
The VCL control must be installed in Delphi. If the com-
ponent isn’t installed in the Component palette, it’s not
registered with Delphi.

Once you click OK, Delphi will convert the VCL control
to an ActiveX control. Because an ActiveX control is based
on OLE, the VCL control can only translate properties
that have a corresponding native OLE data type. In addi-
tion, you can provide an adapter to convert the nonstan-
dard data type into something that OLE can understand.
For example, Delphi comes bundled with adapters, so
OLE can use properties of types TString, TPicture, and
TFont. If Delphi can’t map a data type to a type that OLE
can understand, Delphi will omit that property from the
generated ActiveX control. You can add properties and
methods to the ActiveX control manually by selecting Edit
| Add To Interface, or editing the type library itself. Or, you
can use the Type Library editor (by selecting View | Type
Library) and have Delphi 3 do most of the work.

library CalendarX;

uses
ComServ,

CalendarX_TLB in 'CalendarX_TLB.pas',

CalImpl in 'CalImpl.pas' { CalendarX: CoClass },
CalPage in 'CalPage.pas' { CalendarPage: TPropertyPage };

exports
DllGetClassObject,

DllCanUnloadNow,

DllRegisterServer,

DllUnregisterServer;

{$R *.TLB}

{$R *.RES}

{$E ocx}

begin
end.

Figure 4: The source file for CalendarX. Figure 5: TCalendarPage at design time.

On the Cover
Once the code is generated for the ActiveX control, we can
manipulate it as we would any other Delphi project. For now,
we’ll save the control, then compile it by using the Project |

Build All menu item.

After you’ve compiled the ActiveX control and registered it
with the system, any application that can use ActiveX con-
trols for development can now access this control. Just for
fun, you can import your resulting ActiveX control into
Delphi using the steps previously covered. This will allow
you to view this control as other users might.

Anatomy of an ActiveX Control
Every project created in Delphi needs a project source file
(a .DPR file). ActiveX controls are no exception. An
ActiveX Library is the project source file for all ActiveX
projects. This file exports the four signature methods of an
ActiveX control, provides an extension compiler directive,
and includes the appropriate type library.

The source file for an example calendar project, CalendarX, is
shown in Figure 4. The compiler directive:

{$E ocx}

tells Delphi what extension to give to the compiled version of
the project. To create a new ActiveX Library project from
scratch, you would select File | New | ActiveX | ActiveX Library.

The CalendarX control is good, but it would be nice to offer
an easier way to edit the properties. This is precisely what
property pages were made for.

Property Pages
Property pages give users a friendly way to alter the prop-
erties of an ActiveX control. A property page has a visual
control that represents a corresponding ActiveX property.
These controls are displayed in a tabbed notebook.
7 February 1998 Delphi Informant
To continue our example project, we’ll give CalendarX the
ability to edit the date, in a property page. Create a property
page by selecting File | New | ActiveX | Property Page. Press OK

to generate skeleton code for a property page. After the form
has been created, modify it to look like the one in Figure 5.

The OK, Cancel, and Apply buttons are all provided for you.
In addition, the tabbed notebook reflects the number of
property pages you’ve created. The only controls you need to
place on a property-page form are those that implement the
desired behavior of the property page.

The following steps are necessary to completely implement a
property page:
1) Update the visual controls of the property page to match

the state of the ActiveX control.
2) Modify the visual controls.
3) If necessary, update the ActiveX control’s properties to

reflect the changes made in the property page. This is
done only if the OK or Apply button is pressed.

Delphi supplies all the pieces to easily implement this logic.
The UpdatePropertyPage method will be called whenever the
property page is about to be displayed. This is where you set
the visual controls to show the ActiveX control’s properties.
For example, the following method will set the edit controls
to the values of the ActiveX control:

procedure TCalendarPage.UpdatePropertyPage;

begin
edMonth.Text := OleObject.Month;

edDay.Text := OleObject.Day;

edYear.Text := OleObject.Year;

end;

The TPropertyPage object contains a reference to the ActiveX
control, and places it in a variable called OleObject. Access
this variable whenever you need to access properties or meth-
ods of the ActiveX control.

Figure 6: A standard ActiveX property page at run time.

On the Cover
The ActiveX control must be informed when its properties
change. Whenever a user changes a property via a property
page, you need to call the Modified method of the property
page. This tells the ActiveX control that it needs to update
itself. For example, the following method is assigned to each
Edit component’s OnChange event:

procedure TCalendarPage.EditChange(Sender: TObject);

begin
Modified;

end;

The UpdateObject method is called when the ActiveX control
is about to set its contents from the property page. Basically,
you assign the values you set in UpdatePropertyPage back to
the OleObject of the ActiveX control.

Register the Page
The last step is to bind the property page to the ActiveX con-
trol by registering it. This is accomplished by calling the
DefinePropertyPages procedure inside the ActiveX control’s
DefinePropertyPage method. This method was created in the
skeleton code when you created the ActiveX control. Simply pass
the CLSID of the page that you want to register. You can find
this value in the interface portion of the property-page unit:

procedure TCalendarX.DefinePropertyPages(

DefinePropertyPage: TDefinePropertyPage);

begin
DefinePropertyPage(Class_CalendarXPage);

DefinePropertyPage(Class_DFontPropPage);

end;

Note also that you’ll need to add the name of the property-
page unit to the Calendar ActiveX unit (that’s where you
defined Class_CalendarXPage).

Every property page you define creates another tab on the
property-page editor. This lets the user concentrate on one
logically related group of data at a time. For example, you
could create one property page for modifying the fonts
used in a control, and another for modifying graphic ele-
ments. This would require calling the DefinePropertyPage
method for each PropertyPage you want to register for this
ActiveX control.

You can also easily give your control the ability to modify
properties of type TFont, TColor, TPicture, and TStrings.
These property pages will scan through your ActiveX control’s
properties at run time, and let the user modify individual
attributes of these properties. These property pages are imple-
mented in Stdvcl32.dll; therefore, if your control accesses one
of the standard property pages (see Figure 6), you’ll need to
deploy this file as well.

ActiveX from Scratch
We’ve seen the powerful ability of Delphi to generate
ActiveX controls by using the ActiveX Control Wizard, but
what do you do if your control isn’t listed there? Aside
from the simple case where you have full control of the
component’s parentage, you’ll need to create the ActiveX
8 February 1998 Delphi Informant
control from scratch. Here’s where studying Delphi’s gener-
ated code really pays off.

TreeView components are not listed in the ActiveX
Control Wizard mainly because the Items property is of
type TTreeNodes. This is not an OLE-compatible type, so
there is no automatic way for Delphi to make this struc-
ture ActiveX-compliant. However, with a little reengineer-
ing, we can expose some of the functionality of the Items
property, thus allowing the control to be manipulated as an
ActiveX control.

To create this ActiveX control, first make sure all the files are
closed inside Delphi. Then:
1) Select File | New | ActiveX Library to get the project file

used by ActiveX controls. This creates the project frame-
work for an ActiveX control.

2) Select File | New | Automation Object, and give the object
a class name of TTreeViewX. This will create a COM-
object declaration, as well as a type library. Both these
files will be modified throughout the rest of this process.

3) Make the following changes to the source-code statements
in the Automation Object unit: The TTreeViewX class
must descend from TActiveXControl instead of TAutoObj.
The factory-creation class in the initialization section
must read:

TActiveXControlFactory.Create(ComServer, TTreeViewX,

TTreeView,

Class_TreeView, 1, '', 0)

4) Add the extension directive to the project source file. This
step ensures that when you compile the project, the
resulting binary file will have the standard ActiveX exten-
sion — namely, OCX:

{$E ocx}

5) Borrowing heavily from a Delphi-generated ActiveX
control, make the following modifications to the
TTreeViewX class:

Figure 7: The Type Library editor.

On the Cover

procedure TTreeViewX.AddChild(const RootIndex,

Index: Integer; const S: WideString);

var
ARoot, AChild : TTreeNode;

i : Integer;

begin
// Find the right root position.
ARoot := FDelphiControl.Items.GetFirstNode;

for i := 0 to RootIndex-1 do
if ARoot <> nil then

ARoot := ARoot.GetNextSibling;

// Now find the right child position.
if (ARoot <> nil) and

(ARoot.HasChildren) then
begin

AChild := ARoot.GetFirstChild;

for i := 0 to Index-1 do
if (AChild <> nil) and

(AChild.GetNextChild(ARoot) <> nil) then
AChild := AChild.GetNextChild(ARoot);

FDelphiControl.Items.Add(AChild, S);

end
else
// If sorted, inserted in sort order; else, inserted
// as last child node.
FDelphiControl.Items.AddChild(ARoot,S);

end;

procedure TTreeViewX.AddRoot(const Index: Integer;

const S: WideString);

begin
if FDelphiControl.Items.Count = 0 then

FDelphiControl.Items.Add(nil, S)
else if (Index>=0) and

(Index<FDelphiControl.Items.Count) then
FDelphiControl.Items.Add(FDelphiControl.Items[Index],S);

end;

Figure 8: The AddRoot and AddChild methods.
TTreeViewX = class(TActiveXControl, ITreeViewX)
private
FDelphiControl: TTreeView;

FEvents: ITreeViewXEvents;

protected
procedure InitializeControl; override;
procedure EventSinkChanged (const EventSink:

IUnknown); override;
procedure DefinePropertyPages (DefinePropertyPage:

TDefinePropertyPage);

override;

These methods will provide the link between the VCL
control and the ActiveX control. Whenever you make a
change to the ActiveX control, you’ll actually pass that
change on to the VCL control that it represents. See the
source code for this month’s article for the complete
implementation of this control (see end of article for
download details).

The skeleton for TTreeViewX is now complete. To allow
access to the properties, methods, and events of the TreeView
control, we need to add these elements to the ActiveX wrap-
per through the type library.

For example, to add the Indent property to the control, select
View | Type Library to invoke Delphi’s visual Type Library edi-
tor (see Figure 7). Select the ITreeViewX interface, and press
the Property button. Name this property Indent. Next, press
the Refresh button. This will add two methods to the
TTreeViewX class: Get_Indent and Set_Indent. This is where
the communication between the VCL control and the
ActiveX wrapper occurs.

For the Indent property, it’s a simple matter of reading and
writing the value of FDelphiControl.Indent. Enumerated types
are only slightly more complex to deal with, because you
need to typecast the result to the appropriate type. You can
learn a lot by looking at one or two Delphi-generated
ActiveX control wrappers.

A TreeView control without items is like a vintage car with-
out a steering wheel: It might be interesting to look at, but
you’ll never use it. We need to provide a way to add items to
this control without exposing the TTreeNodes structure to
the outside world. Creating the AddChild and AddRoot
9 February 1998 Delphi Informant
methods to the type library will give TTreeViewX users a way
to add items programmatically. The implementation of these
methods is shown in Figure 8.

Registering the ActiveX Control
After building an ActiveX control, you can take advantage
of Delphi’s ability to register the control for you. Select
Run | Register ActiveX Server to create the required registry
settings for the ActiveX control. Once registered with your
system, you can use the ActiveX control in any capable
environment — including Visual Basic and ActiveX
Control Pad.

Of course, selecting Run | Unregister ActiveX Server will
remove the ActiveX control from the registry. We’ll cover this
topic in more depth next month, when we explore the issues
concerned with deploying ActiveX controls.

ActiveForms
Delphi 3 has supplied you with the ability to easily turn an
existing form into an ActiveX control known as an
ActiveForm. The only real difference between an ActiveForm
and an ActiveX control is that the ActiveForm will likely
contain several visual controls. You can think of it as a
super-component if you want. ActiveForms give you the
ability to deploy almost any Delphi form via the Web.
However, there are some limitations to what an ActiveForm

Figure 10: The Add To Interface dialog box.

Figure 9: The ActiveForm at design time.

On the Cover
can do. For example, an ActiveForm cannot be a robust,
multi-form application. If you need to access multiple
screens in your ActiveForm, consider using a Tabbed
Notebook interface instead.

Creating an ActiveForm
Let’s create a simple ActiveForm to view and edit information
from the Employee table found in \Dbdemos. To create an
ActiveForm, select File | New | ActiveX | ActiveForm. An
ActiveX Library will be built for you, if necessary.

(Note: This demonstration requires BDE 4.0 to be installed
on every client machine that will access this ActiveForm. You
can also deploy a thin-client solution by using MIDAS. For
more information on how to use MIDAS in a Delphi appli-
cation, see http://www.borland.com/midas.)

An ActiveForm is really not much different than a standard
Delphi form. For this example, we’ll place some standard
data-aware controls on the ActiveForm, as shown in Figure 9.
Notice that we can still use the standard Table and
DataSource components to drive our data-aware controls.

Once all the controls are configured, we can save, compile,
and register the ActiveForm as we would any other ActiveX
control. At this point, you could use the ActiveX control in
Visual Basic, with all its functionality intact. However, it
would be nice to give the ActiveX user an interface to control
some individual elements of this super-control.

Because an ActiveX control is a DLL, you can’t directly
access public variables inside the control. Instead, access to
the underlying variables of a form must occur through a pro-
cedural interface. Use Edit | Add To Interface to make a prop-
erty accessible to the outside world. For even more control
over this interface, use the Type Library editor to manipulate
all the attributes of the associated type library.

In our example, we would like to give the user a program-
matic way to control the contents of the Search edit con-
trol’s text property. Select Edit | Add To Interface to display
the dialog box shown in Figure 10. This will create two
stub methods to your ActiveForm: Get_Search and
Set_Search. Fill in the two methods to get and set the
edSearch.Text property of the ActiveForm, respectively.
Now you can access edSearch.Text from any ActiveX devel-
10 February 1998 Delphi Informant
opment environment by assigning a value to the Search
property of the ActiveForm:

function TAFEmployee.Get_Search: WideString;

begin
Result := edSearch.Text;

end;

procedure TAFEmployee.Set_Search(const Value: WideString);

begin
edSearch.Text := Value;

end;

We can further extend this control by adding functionality to
programmatically search a database, and even control the visi-
bility of all the search-related controls. In addition, because
this really is an ActiveX control, we could even add property
pages to this ActiveForm, and import the control for use
within Delphi.

Conclusion
So there you have it — a whirlwind tour. From simply
importing them, to creating your own, in this article we’ve
quickly covered many aspects of Delphi 3 ActiveX program-
ming. In my next article, we’ll discuss techniques for deploy-
ing ActiveX controls and ActiveForms, including how, when,
and why to use run-time packages with your ActiveX con-
trols, and how to deploy them to the Web with INF and
CAB files. ∆

The projects referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\FEB\DI9802DM.

Dan Miser is a software developer residing in Southern California with his wife
and daughter. He has been a Borland Certified Client/Server Developer since
1996, and is a frequent contributor to Delphi Informant. You can contact him
at http://www.iinet.com/users/dmiser.

http://www.borland.com/midas
http://www.iinet.com/users/dmiser

11 February 1998 Delphi Informant

Informant Spotlight
Delphi 3 / ActiveX Scripting

By Tom Stickle

Figure 1: The basic architecture
ActiveX Scripting
Adding Scripting to Your Delphi 3 Applications

For advanced applications that require customization, a scripting language
can be a useful feature. Unfortunately, numerous factors have deterred

developers from providing scripting support in their applications: Creating a
new scripting language from scratch absorbs a great deal of development time
while increasing long-term training and support costs, and licensing a scripting
engine from a third-party company is a potentially expensive undertaking that
creates a dependency on the vendor.
With the arrival of ActiveX scripting, devel-
opers finally have a vendor-independent plat-
form that enables them to add standard
scripting support to their applications. By
using the Component Object Model (COM),
ActiveX scripting provides a common set of
interfaces that allow developers to access vari-
ous scripting languages in the same manner.
Your application need not care what language
the script is written in, because the script exe-
cutes in a separate object known as a scripting
engine. For example, if your application sup-
ports ActiveX scripting, you can use
Microsoft’s Visual Basic Scripting Edition
 of ActiveX scripting.
(currently available free of royalties), VBA,
JavaScript, or Perl — without changing a
single line of code.

The ActiveX scripting implementation con-
sists of two inter-related COM objects: the
scripting engine and the scripting host. The
scripting engine is the COM object that
processes scripts, i.e. VBScript or JScript.
The scripting host is a COM object that is
tied to our application. Figure 1 shows the
basic architecture of ActiveX scripting. The
idea is that the scripting host object is
responsible for creating our application’s cus-

tom COM objects, as well as han-
dling communication from the
scripting engine to the applica-
tion. This is accomplished by “fas-
tening” the scripting host to the
scripting engine at the time the
engine is initialized.

The Scripting Engine
To successfully implement ActiveX
scripting in an application, you
first need a basic knowledge of the
interfaces and methods available.
In this article, we’ll tackle the com-
monly used interfaces and methods

function TScriptingDemo.InitEngine : Boolean;

var
CatID: TGuid;

begin
Result := False;

{ Choose CatID based on the menu selection. }
if tmVBScript.Checked then

CatID := CatID_VBScript

else
CatID := CatID_JScript;

ActiveScript := IActiveScript(CreateComObject(CatID));

{ Get Interface pointer for
IActiveScriptParse Interface. }

if (ActiveScript.QueryInterface(IID_IActiveScriptParse,

ActiveScriptParse) <> S_OK) then
Exit;

{ Instantiate Site Object. }
ActiveScriptSite :=

IActiveScriptSite(TActiveScriptSite.Create);

{ Register Site Object with the ActiveScript Engine. }
if ActiveScript.SetScriptSite(

ActiveScriptSite) <> S_OK then
Exit;

{ Initialize the engine. }
if (ActiveScriptParse.InitNew <> S_OK) then

Exit;

{ Now fire up the scripting engine. }
if ActiveScript.SetScriptState(

SCRIPTSTATE_CONNECTED) <> S_OK then
Exit;

{ If we made it this far then we have succesfully
initialized the engine! }

Result := True;

end;

Figure 2: Starting a scripting session.

Informant Spotlight
with enough detail to get you started. For more information,
consult Microsoft’s Web site at http://www.microsoft.com.

The scripting engine is made available through a series of
COM interfaces. Although there are several optional inter-
faces that can be used in different scenarios, our application
will interact with the following three:

IActiveScript. This interface is the primary means of com-
municating from our application to the scripting engine.
It provides a mechanism for starting and stopping the
scripting engine.
IActiveScriptParse. This is an interface to the parser that
allows us to submit a script at run time.
IActiveScriptError. An instance of this interface is returned
to us by the scripting engine when an error occurs. We
can use it to request more detailed error information.

For our demonstration application, the Activescp.pas file
(see Listing One beginning on page 15) contains the
Delphi wrapper for accessing the scripting engine’s
automation interfaces (see end of article for download
details). With the drudgery of creating the wrapper out of
the way, we can now focus on the details of those inter-
faces and methods.
12 February 1998 Delphi Informant
Getting Started
To link our application to the scripting engine, we create a
COM object of our own, known as the Script Site Object.
You’ll notice the interface declarations for this object in the
Activescp.pas file as well, but unlike the scripting engine, we
are responsible for implementing this object. The Script Site
Object is responsible for providing the scripting engine with
any available application objects and an interface for retrieving
error information such as syntax and run-time script errors.
For our demonstration, we’ll be implementing two interfaces:

IActiveScriptSite. This interface provides the primary
method of communicating from the scripting engine to
our application.
IActiveScriptSiteWindow. This is a simple interface that
passes the scripting engine a window handle from our
application. By implementing this interface, any windows
that are created by our script will appear to be a seamless
part of our application.

As seen in Listing Two (beginning on page 16), the
Scriptsite.pas file contains the implementation for this
object. Although we are implementing all methods, we are
really only adding processing for two methods:

OnScriptError. This is triggered whenever a design- or
run-time error occurs when processing a script. By imple-
menting this method, we’re able to provide users with
meaningful information about an error, such as the line
and column of a syntax error.
GetWindow. This is triggered whenever the scripting
engine needs to obtain a window handle.

Starting the Engine
As mentioned earlier, one of the great benefits of the
ActiveX Scripting architecture is the ability to switch
scripting engines without modifying your application
code. You may be wondering how our application can tell
the difference between the VBScript Engine interfaces and
the JScript interfaces. After all, each interface has the same
name and is defined by the same globally unique identifier
(GUID). We are able to differentiate the various engines
because the engine provider is required to group the inter-
faces together with a special type of GUID known as a
category identifier (CatID). The scripting engine we inte-
grate with is determined by which CatID we submit when
instantiating the COM interfaces. This means we can easi-
ly swap scripting engines without changing a single line of
code, even at run time.

You can now create a Delphi method to handle the steps
required to start our scripting session (see Figure 2). We first
create an instance of the scripting engine by calling
CreateComObject and pass in the category identifier of the
scripting engine we want to instantiate. When doing this,
be sure the variables storing those interface pointers are
global, since Delphi 3 will release them as they go out of
scope. Once we have a handle to IActiveScript, we can easily
query out the IActiveScriptParse interface. At this point, we
instantiate our IActiveScriptSite object and pass it into the
engine. This step bridges the two objects together for the

http://www.microsoft.com

function TScriptingDemo.ParseScript(

const ScriptText: WideString): Boolean;

var
Ei: TExcepInfo;

Flags: DWord;

VarOut: OleVariant;

begin
Flags := SCRIPTTEXT_NULL;

Result := (activeScriptParse.ParseScriptText(

ScriptText, nil, nil, nil,
0, 0, Flags, VarOut, Ei) = S_OK);

end;

Figure 3: Submitting a script for parsing and execution.

procedure TScriptingDemo.StopEngine;

begin
ActiveScript.SetScriptState(SCRIPTSTATE_UNINITIALIZED);

end

Figure 4: Reinitializing the scripting engine.

Informant Spotlight

procedure TScriptingDemo.FireMethod(

const EventName: WideString);

var
Disp: Integer;

DispParams: TDispParams;

Ei: TExcepInfo;

InvKind: Integer;

ReturnVal: POleVariant;

ScriptDispatch: IDispatch;

begin

if ActiveScript.GetScriptDispatch(

nil, ScriptDispatch) <> S_OK then
Exit;

{ Initialize dispatch id. }
Disp := -1;

{ Get a dispatch id number that corresponds to
the EventName name. }

ScriptDispatch.getIDsOfNames(GUID_NULL, @eventName, 1,

LOCALE_USER_DEFAULT, @disp);

{ See if anything was found for the EventName --
Spelling Error will fail! }

if disp = -1 then
begin
ShowMessage(Format(

'The method %s was not found in the script...',

[EventName]));

Exit;

end;

{ Set the type of invocation to method. }
InvKind := DISPATCH_METHOD;

{ This structure can contain up to 32 arguments to pass
in, but we will not pass any in the demo. }

ReturnVal := nil;
DispParams.rgvarg := nil;
DispParams.rgdispidNamedArgs := nil;
DispParams.cArgs := 0;

DispParams.cNamedArgs := 0;

{ Fire the Event via ID Binding. }
ScriptDispatch.Invoke(Disp, GUID_NULL, 0, InvKind,

DispParams, ReturnVal, @ei, nil);
end;

Figure 5: ID binding allows for generic code to call a routine
in script.
session. The last step is to call InitNew, then change the
engine state to connected. We have now successfully fired
up the scripting engine.

Parsing the Script
Now that we have a mechanism for starting the engine, we
must have a way to submit our script for parsing and exe-
cution. This is accomplished through the use of the
IActiveScriptParse interface and its ParseScriptText method.
We can conveniently bundle this call into a Delphi
method (see Figure 3).

Resetting the Engine
In many cases, you’ll probably want the ability to submit a
script, execute it, but then reset the engine so you can repeat
the process with another script. This can be done by chang-
ing the script state from connected to uninitialized. The
Delphi method shown in Figure 4 accomplishes this.

Firing a Script Subroutine
Fortunately, the scripting engine gives us the ability to selec-
tively fire individual subroutines or functions in the script
from our Delphi application. This is possible because the
scripting engine exposes all subroutines through an automa-
tion interface at the time the script is parsed. We can now
treat the methods in the script as if they were methods in any
standard dual automation object.

A dual automation object is essentially an ordinary COM
object. As with any COM object, it has a vtable that con-
tains pointers to its methods and properties. The big dif-
ference is that it also contains a dispatch interface — or
dispinterface — that assigns a unique integer identifier,
referred to as a dispatch identifier (DispID), to each
method and property. The second major difference is that
a dual automation object inherits from an interface, called
IDispatch, which provides a method for calling any other
methods in the vtable based on its DispID.

The clear advantage of this mechanism is that we now have
the ability to execute any routine in the script at run time.
13 February 1998 Delphi Informant
We simply query the IDispatch interface for the DispID that
corresponds to the name of a script routine, and then invoke
that method based on the DispID. This technique is known
as ID binding, and enables us to create generic code for call-
ing a routine in the script (see Figure 5).

Exposing Application Objects to the Script
For the scripting engine to have true significance to an
application, we must be able to expose an application’s
Automation objects to the script, so that users can easily
access them without knowledge of COM. After all, one of
the major advantages a scripting language provides is that
users can control the logic of complex tasks without having
to know all the details. For example, a script writer may add
the following code to a script:

if CountDown = 0 then

Rocket.Launch

end if

procedure TMyObj.ShowCelcius(DegreesF: Integer);

var
DegreesC : Integer;

begin
DegreesC := (DegreesF - 32) * 5 div 9;

MessageDLG(Format(

'%d degrees Fahrenheit is equal to %d degrees Celcius.',

[DegreesF, DegreesC]) , mtInformation, [mbOK], 0);

end;

Figure 6: The ShowCelcius method.

Informant Spotlight

function TActiveScriptSite.GetItemInfo(

ItemName: WideString; dwReturnMask: DWord;

out UnkItem: IUnknown; out TypeInfo: ITypeInfo): HResult;

var
ObjDispatch: IDispatch;

begin
{ This method is called when the engine wants information

about an object that we submitted by calling
AddNamedItem. Using Delphi 3, the instances created
here will be freed when they go out of scope. }

{ Does the engine want the Automation object's IUnknown
pointer? }

if (dwReturnMask = SCRIPTINFO_IUNKNOWN) and
(ItemName = 'MyObj') then

UnkItem := CoMyObj.Create;

{ Does the engine want the Automation object's
type information? }

if (dwReturnMask = SCRIPTINFO_ITYPEINFO) and
(ItemName = 'MyObj') then

begin
ObjDispatch := CoMyObj.Create;

{ Get a handle to our Automation object's
type library. }

ObjDispatch.GetTypeInfo(0,0,TypeInfo);

end;

Result := S_OK;

end;

Figure 7: The GetItemInfo method.
In this scenario, the three lines of VBScript handle the flow
of control, but the Delphi Rocket object provides the intelli-
gence and power to handle the details.

To demonstrate how you can expose the complex logic of an
application to the scripting language, you can create a simple
COM Automation object using Delphi 3. Although you
might normally store your application objects in an ActiveX
Library (.DLL), for simplicity, you can add it to the current
project. The first step is to request a new ActiveX object by
selecting File | New | ActiveX | Automation Object to invoke
the Type Library editor. Add a new interface named IMyObj,
with a method called ShowCelcius.

You can implement ShowCelcius as shown in Figure 6. This is
a simple routine that converts Fahrenheit temperatures to
Celcius. Be sure to add Dialogs and Demo_TLB to the uses
statement, register the type library using the Type Library edi-
tor, and then register the new object with the OS.

We need to make two modifications to make our new object
available to scripting applications. When you initialize the
scripting engine, you can add the name of your object to the
14 February 1998 Delphi Informant
engine’s namespace by adding the following to your
InitEngine method before the connection is made:

Flags := SCRIPTITEM_ISVISIBLE;

ActiveScript.AddNamedItem('MyObj', Flags);

When a script is parsed, the engine will now be aware of an
object called MyObj. If the script contains a reference to
MyObj, the scripting engine will call the GetItemInfo method
of our Script Site Object to obtain an instance of the actual
object; add the code shown in Figure 7 to accomplish this.

Testing
Now lets look at ActiveX scripting in action. In our sample
code editor, create a simple routine that references our COM
object and calls a method in it:

Sub Main

Dim ANumber

ANumber = InputBox(_

"Please enter a temperature (F) to convert")

MyObj.ShowCelcius ANumber

End Sub

When you fire off this code in the editor, you’ll be prompted
for a Fahrenheit temperature; a message box will then appear
with the appropriate conversion. Of course, you should try
running the code with a syntax error to see how the engine
reports it through the Script Site Object.

The last thing to try is to switch the sample application’s script-
ing engine from VBScript to JScript. Because JScript has no
built-in support for simple input and output statements such as
the Visual Basic MsgBox and InputBox, we would have to use
our custom Automation objects to collect input and display out-
put to the user. For simplicity, we can type in the following code:

function Main() {

MyObj.ShowCelcius(98);

}

Installing the sample. For the sample application to work on
your machine, you must install the Visual Basic Scripting edi-
tion. The latest version of VB Scripting edition is available at
http://www.microsoft.com/vbscript.

Conclusion
The addition of ActiveX scripting to your Delphi applications
provides the ability to include powerful application objects in
a familiar, easy-to-use, scripting language. Your users can then
manipulate the flow of an application while leaving the com-
plex details to you. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\FEB\DI9802TS.

Tom Stickle lives in Phoenix, AZ. He can be reached at (602) 598-1890, or via
e-mail at tstix@dancris.com.

http://www.microsoft.com/vbscript

Informant Spotlight
Begin Listing One — ACTIVESCP.PAS
unit Activscp;

interface

{ Interface specification for ActiveX Scripting. }
uses

Windows, comobj, activeX;

{ IActiveScript.AddNamedItem input flags. }
const
SCRIPTITEM_ISVISIBLE = $00000002;

SCRIPTITEM_ISSOURCE = $00000004;

SCRIPTITEM_GLOBALMEMBERS = $00000008;

SCRIPTITEM_ISPERSISTENT = $00000040;

SCRIPTITEM_CODEONLY = $00000200;

SCRIPTITEM_NOCODE = $00000400;

SCRIPTITEM_ALL_FLAGS = (SCRIPTITEM_ISSOURCE +

SCRIPTITEM_ISVISIBLE +

SCRIPTITEM_ISPERSISTENT +

SCRIPTITEM_GLOBALMEMBERS +

SCRIPTITEM_NOCODE +

SCRIPTITEM_CODEONLY);

{ IActiveScript.AddTypeLib() input flags. }
const
SCRIPTTYPELIB_ISCONTROL = $00000010;

SCRIPTTYPELIB_ISPERSISTENT = $00000040;

SCRIPTTYPELIB_ALL_FLAGS =

(SCRIPTTYPELIB_ISCONTROL + SCRIPTTYPELIB_ISPERSISTENT);

{ IActiveScriptParse.AddScriptlet() and
IActiveScriptParse.ParseScriptText() input flags. }

const
SCRIPTTEXT_NULL = $00000000; { Added for demo. }
SCRIPTTEXT_ISVISIBLE = $00000002;

SCRIPTTEXT_ISEXPRESSION = $00000020;

SCRIPTTEXT_ISPERSISTENT = $00000040;

SCRIPTTEXT_ALL_FLAGS = (SCRIPTTEXT_ISVISIBLE

+ SCRIPTTEXT_ISEXPRESSION

+ SCRIPTTEXT_ISPERSISTENT);

{ IActiveScriptSite.GetItemInfo() input flags. }
const
SCRIPTINFO_IUNKNOWN = $00000001;

SCRIPTINFO_ITYPEINFO = $00000002;

SCRIPTINFO_ALL_FLAGS =

(SCRIPTINFO_IUNKNOWN + SCRIPTINFO_ITYPEINFO);

{ IActiveScript.Interrupt() Flags. }
const
SCRIPTINTERRUPT_DEBUG = $00000001;

SCRIPTINTERRUPT_RAISEEXCEPTION = $00000002;

SCRIPTINTERRUPT_ALL_FLAGS =

(SCRIPTINTERRUPT_DEBUG +

SCRIPTINTERRUPT_RAISEEXCEPTION);

{ Script state enumerations. }
type
SCRIPTSTATE = LongInt; { (0..5); }

const
SCRIPTSTATE_UNINITIALIZED = SCRIPTSTATE(0);

SCRIPTSTATE_INITIALIZED = SCRIPTSTATE(5);

SCRIPTSTATE_STARTED = SCRIPTSTATE(1);

SCRIPTSTATE_CONNECTED = SCRIPTSTATE(2);

SCRIPTSTATE_DISCONNECTED = SCRIPTSTATE(3);

SCRIPTSTATE_CLOSED = SCRIPTSTATE(4);

{ Script thread state values. }
type
SCRIPTTHREADSTATE = LongInt; { 0..1 }

const
SCRIPTTHREADSTATE_NOTINSCRIPT = 0;
15 February 1998 Delphi Informant
SCRIPTTHREADSTATE_RUNNING = 1;

{ Thread IDs }
type
SCRIPTTHREADID = DWORD;

const
SCRIPTTHREADID_CURRENT = SCRIPTTHREADID(-1);

SCRIPTTHREADID_BASE = SCRIPTTHREADID(-2);

SCRIPTTHREADID_ALL = SCRIPTTHREADID(-3);

{ GUIDs }
const
{ Category IDs }
CATID_VBScript: TGUID =

'{ B54F3741-5B07-11CF-A4B0-00AA004A55E8 }';
CATID_JScript: TGUID =

'{ F414C260-6AC0-11CF-B6D1-00AA00BBBB58 }';

{ Class IDs }
IID_IActiveScriptParse: TGUID =

'{ BB1A2AE2-A4F9-11CF-8F20-00805F2CD064 }';
IID_IActiveScriptSite: TGUID =

'{ DB01A1E3-A42B-11cf-8F20-00805F2CD064 }';
IID_IActiveScriptSiteWindow: TGUID =

'{ D10F6761-83E9-11cF-8F20-00805F2CD064 }';

{ String version of GUIDs }
Class_IActiveScriptSite =

'{ DB01A1E3-A42B-11cf-8F20-00805F2CD064 }';
Class_IActiveScriptSiteWindow =

'{ D10F6761-83E9-11cF-8F20-00805F2CD064 }';

type
POleVariant = ^OleVariant;

IActiveScript = interface; { Forward declarations. }
IActiveScriptParse = interface;
IActiveScriptSite = interface;
IActiveScriptSiteWindow = interface;

{ IActiveScript Interface - Methods in VTable order. }
IActiveScript = Interface(IUnknown)

function SetScriptSite(ScriptSite: IActiveScriptSite):

HResult; stdcall;
function GetScriptSite(const iid: TIID; out vObj):

HResult; stdcall;
function SetScriptState(ScriptState: LongInt):

HResult; stdcall;
function GetScriptState(out ScriptState: LongInt):

HResult; stdcall;
function Close:HResult; stdcall;
function AddNamedItem(ItemName: WideString;

dwFlags: DWord): HResult; stdcall;
function AddTypeLib(const GuidTypeLib: TGUID;

wVerMajor, wVerMinor, wFlags: Word):

HResult; stdcall;
function GetScriptDispatch(StrItemName: Pointer;

out ScriptDispatch: IDispatch): HResult; stdcall;
function GetCurrentScriptThreadID(

wScriptThreadID: Word): HResult; stdcall;
function GetScriptThreadState(wScriptThreadID,

wScriptState: Word): HResult; stdcall;
function InterruptScriptThread(wScriptThreadID: Word;

ExcepInfo: PExcepInfo; wFlags: Word):

HResult; stdcall;
function Clone(Script: iActiveScript): HResult;

stdcall;
function GetScriptThreadID(wWin32Thread,

wScriptThreadID: Word): HResult; stdcall;
end;

{ IActiveScriptParse Interface - Methods in VTable order. }
IActiveScriptParse = interface(IUnknown)

function InitNew: HResult; stdcall;
function AddScriptlet(DefaultName, ScriptCode,

ItemName, SubItemName, EventName, Delimiter:

WideString; wSrcContextCookie: Word; StartLine:

Integer; wFlags: Word; StrName: WideString;

Informant Spotlight
var ExcepInfo: TExcepInfo): Integer; stdcall;
function ParseScriptText(MainScript: WideString;

ItemName: Pointer; UnkContext: IUnknown;

EndDelimiter: Pointer; dwSourceCookie: DWORD;

StartLineNo: Integer; dwFlags: DWord;

var VarOut: OleVariant; var ExcepInfo: TExcepInfo):

HResult; stdcall;
end;

{ IActiveScriptError Interface --
Methods in VTable order. }

IActiveScriptError = interface(IUnknown)
function GetExceptionInfo(var excepInfo: TExcepInfo):

HResult; stdcall;
function GetSourcePosition(out wContextCookie: Word;

out lineNo: UINT; out charPos: Integer):

HResult; stdcall;
function GetSourceLineText(wsSourceLine: WideString):

HResult; stdcall;
end;

{ IActiveScriptSite Interface --
We are responsible for implementing this. }

IActiveScriptSite = interface(IUnknown)
[Class_IActiveScriptSite]

function GetLCID(var wLCID: TLCID): HResult; stdcall;
function GetItemInfo(StrName: WideString;

dwReturnMask: DWord; out UnkItem: IUnknown;

out TypeInfo: ITypeInfo): HResult; stdcall;
function GetDocVersionString(var VersionString: TBSTR):

HResult; stdcall;
function OnScriptTerminate(var VarResult: OleVariant;

var ExcepInfo: TExcepInfo): HResult; stdcall;
function OnStateChange(ScriptState: LongInt):

HResult; stdcall;
function OnScriptError(pAse: IActiveScriptError):

HResult; stdcall;
function OnEnterScript: HResult; stdcall;
function OnLeaveScript: HResult; stdcall;

end;

{ IActiveScriptSiteWindow is aggregated
into IActiveScriptSite. }

IActiveScriptSiteWindow = interface(IUnknown)
[Class_IActiveScriptSiteWindow]

function GetWindow(var Hwnd: THandle):

HResult; stdcall;
function EnableModeless(FEnable: WordBool):

HResult; stdcall;
end;

implementation

end.

End Listing One
Begin Listing Two — SCRIPTSITE.PAS
{ This implements the required
IActiveScriptSite Interface. }

unit ScriptSite;

interface
uses

Windows, SysUtils, comobj, activeX, Activscp, Dialogs,

Forms, ComServ, Demo_TLB;

type
{ TActiveScriptSite Declaration. }
TActiveScriptSite = class(TComObject, IActiveScriptSite,

IActiveScriptSiteWindow)

protected
{ IActiveScriptSite }
function GetLCID(var wLCID: TLCID): HResult;

virtual; stdcall;
function GetDocVersionString(var VersionString: TBSTR):

HResult; virtual; stdcall;
16 February 1998 Delphi Informant
function GetItemInfo(ItemName: WideString;

dwReturnMask: DWord; out UnkItem: IUnknown;

out TypeInfo: ITypeInfo): HResult; virtual; stdcall;
function OnScriptTerminate(var VarResult: OleVariant;

var ExcepInfo: TExcepInfo): HResult; virtual; stdcall;
function OnStateChange(ScriptState: LongInt): HResult;

virtual; stdcall;
function OnScriptError(pAse: IActiveScriptError):

HResult; virtual; stdcall;
function OnEnterScript: HResult; virtual; stdcall;
function OnLeaveScript: HResult; virtual; stdcall;
{ IActiveScriptSiteWindow }
function GetWindow(var Hwnd: THandle): HResult; stdcall;
function EnableModeless(FEnable: WordBool):

HResult; stdcall;
end;

implementation

{ TActiveScriptSite - Protected Implementation. }
function TActiveScriptSite.GetLCID(var wLCID: TLCID):

HResult;

begin
{ No need for us to do anything here. }
Result := S_OK;

end;

function TActiveScriptSite.GetItemInfo(

ItemName: WideString; dwReturnMask: DWord;

out UnkItem: IUnknown; out TypeInfo: ITypeInfo): HResult;

var
ObjDispatch : IDispatch;

begin
{ This method is called when the engine wants information

about an object that we submitted by calling
AddNamedItem. Using Delphi 3, the instances created
here will free when they go out of context. }

{ Does the engine want the Automation object's
IUnknown Pointer? }

if (dwReturnMask = SCRIPTINFO_IUNKNOWN) and
(ItemName = 'MyObj') then

UnkItem := CoMyObj.Create;

{ Does the engine want the Automation object's type
information? }

if (dwReturnMask = SCRIPTINFO_ITYPEINFO) and
(ItemName = 'MyObj') then

begin
ObjDispatch := CoMyObj.Create;

{ Get a handle to our Automation object's
Type Library. }

ObjDispatch.GetTypeInfo(0,0,TypeInfo);

end;

Result := S_OK;

end;

function TActiveScriptSite.GetDocVersionString(

var VersionString: TBSTR): HResult;

begin
{ Tell engine that we will accept its default,

i.e. not implemented. }
Result := E_NOTIMPL;

end;

function TActiveScriptSite.OnScriptTerminate(

var VarResult: OleVariant;

var ExcepInfo: TExcepInfo): HResult;

begin
{ This tells us that the script is completed. }
Result := S_OK;

end;

function TActiveScriptSite.OnStateChange(

ScriptState: LongInt): HResult;

begin
{ Alerts us when engine states are changing. }
Result := S_OK;

Informant Spotlight
end;

function TActiveScriptSite.OnScriptError(

pAse: IActiveScriptError): HResult;

var
wCookie: Word;

ErrString: string;
ExcepInfo: TExcepInfo;

CharNo: LongInt;

LineNo: LongInt;

begin

wCookie := 0;

LineNo := 0;

CharNo := 0;

if Assigned(pAse) then
begin
pAse.GetExceptionInfo(ExcepInfo);

pAse.GetSourcePosition(wCookie, LineNo, CharNo);

ErrString := concat(ExcepInfo.bstrSource, ' ',

ExcepInfo.bstrDescription, ' ',

'Line ', intToStr(LineNo),

'. Column ', intToStr(CharNo));

ShowMessage(ErrString);

end;

pAse := nil;
result := E_FAIL; { Halt script execution! }

end;

function TActiveScriptSite.OnEnterScript(): HResult;

begin
Result := S_OK;

end;

function TActiveScriptSite.OnLeaveScript(): HResult;

begin
Result := S_OK;

end;

{ IActiveScriptSite Window Implementation. }
function TActiveScriptSite.GetWindow(

var Hwnd: THandle): HResult;

begin
{ ActiveX Scripting uses this to get a window handle from

our application. This allows the script engine to
display information on the interface, such as a
dialog box. }

Hwnd := Application.Handle;

Result := S_OK;

end;

function TActiveScriptSite.EnableModeless(

FEnable: WordBool): HResult;

begin
{ Causes the host to enable or disable its main window

as well as any modeless dialog boxes. We won't need
this for our demo. }

Result := S_OK;

end;

initialization
TComObjectFactory.Create(ComServer, TActiveScriptSite,

IID_IActiveScriptSite, 'ActiveScript Host', '',

ciMultiInstance);

end.

End Listing Two
17 February 1998 Delphi Informant

18 February 1998 Delphi Informant

DBNavigator
Delphi 3 / Code Insight

By Cary Jensen, Ph.D.

Figure 1: If yo
Code Complet
reference.
Insightful Delphi
Delphi 3’s Code Insight Feature

One of the most powerful features of Delphi 3’s editor is virtually unknown.
This feature, called Argument Value Lists, is part of Code Insight. This

month’s “DBNavigator” provides an introduction to Code Insight, including the
largely undocumented Argument Value Lists.
Code Insight is a powerful new feature of the
Delphi editor that provides additional online
help for the various declarations visible from
the unit you are editing. Code Insight is pos-
sible because Delphi is continuously parsing
your code in the background while you work.
So long as the statements you are entering
can be parsed (and are more or less syntacti-
cally correct), Code Insight works to analyze
your code, as well as that in any unit you are
using. In fact, Code Insight doesn’t even
require the source code (the .PAS file) — the
.DCU file alone provides enough informa-
tion. This information is used to generate and
display popup lists and hints, either when
you pause for a moment (as with Code
Completion), or when you specifically request
it using shortcut keystrokes.

There are five basic features of Code Insight:
u pause after entering an instance reference,
ion displays the members that are visible from the
1) Code Completion
2) Code Parameters
3) Argument Value Lists
4) Code Templates
5) Tooltip Expression Evaluation

Code Completion
Code Completion is a feature that generates
and displays a list of the visible members of an
instance or class reference. There are two
advantages of Code Completion. First, it
reminds you which members (that is, fields,
properties, and methods) are accessible from
your reference. Second, it permits you to select
a member from this list to have the member
inserted automatically into the editor, rather
than requiring you to type the entire reference.

If you’ve used Delphi 3, you have no doubt
encountered Code Completion. For example,
if you select File | New Application, add a but-
ton to the default form, add an event handler
to this button, then type a reference to an
instance of the form followed by a dot (the
member reference operator), Code Completion
displays the list shown in Figure 1.

By comparison, if you enter a reference to the
TForm1 class, rather than an instance of the
class, a slightly different list is displayed. This
list, shown in Figure 2, displays those mem-
bers that are visible from a reference to the
class itself.

As mentioned earlier, the list displayed by
Code Completion respects the visibility of the
declared members of the class. For example,
within a unit where the class TForm1 is
declared, the list generated for an instance of

Figure 2: Code Completion can also display the members
visible from a class reference.

Figure 3: Right-click the list displayed by Code Completion to
change its sort order.

DBNavigator

Figure 4: Code Parameters displays the syntax of the argument
list for a function, procedure, or method.
the TForm1 class includes private declarations, because private
members are accessible within that unit. However, if the
TForm1 class is declared in another unit (and that unit
appears in an appropriate uses clause for the unit you are edit-
ing), Code Completion will display only the public and pub-
lished members of a TForm1 instance. Protected members are
only displayed when you are editing a method associated with
the class within which they are declared, or a method in a
class that descends from the one in which they are declared.
Again, this corresponds to member visibility.

When you install Delphi 3, this list is sorted alphabetically by
default. You can, however, change the sort order by right-
clicking the list and selecting Sort by Scope, as shown in
Figure 3. You can return to an alphabetically-sorted list by
right-clicking and selecting Sort by Name.

Once the Code Completion list is displayed, you can have Code
Insight enter one of the listed members at your cursor by first
highlighting the desired member and then pressing J. There
are two ways to highlight a member. One way is to search incre-
mentally. Specifically, begin typing the name of the member you
want. As you type, Code Completion will move through the list,
highlighting the member whose name most closely matches
what you typed. The second technique is to use your cursor
keys, t, b, h, e, etc. You can use these techniques con-
currently. For example, you can begin by using an incremental
search to move to the general vicinity of a member in the list,
then use the cursor keys to select it. For obvious reasons, incre-
mental searching is usually only effective when the list is sorted
alphabetically.

You can cancel the list displayed by Code Completion by
pressing E. Furthermore, if you have an instance or object
reference and the Code Completion list is not currently dis-
played, you can force its display by pressing CM.

Code Parameters
The Code Parameters feature of Code Insight provides on-
the-fly syntax display for the arguments of methods, proce-
19 February 1998 Delphi Informant
dures, and functions that are visible from your unit. For
example, imagine you are typing the following into a unit that
is using the Dialogs unit:

if MessageDlg(

Shortly after typing the open parenthesis, Code Parameters
will display the syntax of the parameters of this function, as
shown in Figure 4. The parameter you are currently entering
is displayed in bold. If there is more than one parameter, the
bold type face in the Code Parameters window advances to
the next parameter as you complete each one.

While Code Parameters, like Code Completion, is displayed
automatically, the Help window will be removed if you move
your cursor to another line of code. If this happens, you can
re-display the Help window by moving your cursor back to
the argument list and pressing CSM.

Argument Value Lists
Argument value lists can be generated when you are entering
an expression, such as the actual parameter in an argument
list or the expression on the right side of an assignment state-
ment. Unlike Code Completion and Code Parameters, the

Figure 5: Press CM to see the list of expressions valid in the
current context.

DBNavigator

Figure 6: Press CJ in the editor to display defined code
Argument Value Lists feature must be specifically requested
by pressing CM. The list generated displays the con-
stants, functions, and variables that are consistent with the
argument required by the expression.

I think this is the most powerful feature available in Code
Insight. Unfortunately — and ironically — it is unknown to
most Delphi developers. In fact, the section of the User’s
Guide that ships with Delphi 3 fails to even mention
Argument Value Lists. I even attempted to locate some men-
tion of it in the online Help while writing this article, but
was unsuccessful. I know it must be in the online Help some-
where, because that’s how I learned of this feature (shortly
before Delphi 3 shipped). However, I am unable to locate a
reference now.

In any case, it is a Delphi 3 feature, and a powerful one at
that. For example, imagine that while you are entering the
function MessageDlg you cannot recall which values are
acceptable for the second argument, DlgType, which is of the
type TMsgDlgType. Such a situation is perfect for Argument
Value Lists. With your cursor poised to enter the second
argument, press CM. When you do, Code Insight gen-
erates and displays a list of the symbols that are visible to
your unit that match the data type of the required expression.
The list generated for the second argument of the MessageDlg
function is shown in Figure 5.

As with Code Completion, while the argument value list is
displayed you can begin typing the name of the symbol you
want, use your cursor keys to navigate the list, or both. Once
the symbol you want entered at your cursor is highlighted,
press J to have Code Insight enter the value.

Also similar to Code Completion, you can sort argument
value lists alphabetically or by scope. In most cases it’s best to
have this list sorted by scope, because that will place all expres-
sions of the matching type as required by the expression at the
top of the list. This is useful because the list not only includes
symbols that match your expression exactly, but also includes
any variants that are visible from your unit (because variants
are assignment-compatible with a wide range of expression
20 February 1998 Delphi Informant
types). To change the sort order of the argument value list,
right-click the list and select the sort order you want.

Code Templates
A code template is a pre-defined snippet of code that can be
inserted into the editor at your request. For example, if you
want to enter an if statement, position your cursor at the
location where you want the code template to be entered,
then press CJ. Code Insight displays a list of the existing
code templates, as shown in Figure 6.

As with the argument value list, you can navigate this list of
code templates by using t, b, h, e, etc., or by con-
ducting an incremental, alphabetical search of the entries.
Once the template you want is highlighted, press J to
select it. Code Insight responds by entering the code, and
placing your cursor within it.

The code template list that appears when you press CJ
has two columns. The first column contains the template
description; the second column contains a shortcut, or
mnemonic, for the template. The shortcut contains no
spaces, and must be unique for each template. For example,
the shortcut for one of the if templates is ifeb. Once this list
of templates is displayed, you can perform an incremental
search on the shortcut, use your cursor keys, or both. After
you’ve highlighted the entry of the template you want, press
J to have Code Insight enter the template at the position
of your cursor.

If you know the shortcut associated with a particular code
template, you can access the template directly by typing the
shortcut, then pressing CJ. If the characters of the short-
cut you have typed are unique to that shortcut, the code
template is entered without the template list being displayed.

If two or more shortcuts share the same characters as the one
you entered, a short list of only those templates whose short-
cut names match what you have entered is displayed. For
example, if you enter if, then press CJ, the code tem-
plate list contains all templates whose shortcuts begin with
“if ”, as shown in Figure 7.

templates.

Figure 7: If you enter only part of a shortcut name, and that part
matches two or more templates, Code Insight displays a short list of
the matching template shortcut names from which you can choose.

DBNavigator

Figure 8: The Code Insight page of the Environment Options
dialog box.

Figure 9: Tooltip Expression Evaluation permits you to inspect
the value of variables and properties at run time, without using
Run | Evaluate/Modify or setting watches.
Creating Your Own Templates
While Delphi ships with a number of useful code templates,
you can easily add custom code templates. To do so, select
Tools | Environment Options from Delphi’s main menu. Next,
select the Code Insight page of the Environment Options
dialog box, as shown in Figure 8.

To add a new template, select Add. In the Add Code Template
dialog box enter a shortcut name and a description. Remember
that the shortcut name must be unique. Also keep in mind that
the incremental search of the template list is based on the short-
cut name. For example, click Add and enter the shortcut name
repeat, followed by the description repeat statement. Press
J to continue. Now, within the Code field of the dialog box,
enter the following:

repeat
|

until expression;
21 February 1998 Delphi Informant
Notice that the vertical bar (|) was placed where one or more
statements must be entered. The vertical bar character defines
where you want the cursor placed after the template has been
entered. If you now enter repeat in the code editor and press
CJ, the entire template will be entered, and your cursor
will appear on the line following the keyword repeat.

You can also easily modify existing code templates. To change
the name or description of a template, select the template in
the template list and select Edit. To change the text of the
template itself, select the template in the Templates list, then
simply modify the displayed code in the Code field.

The template text is written to an ASCII file named
delphi32.dci, which is stored in Delphi’s \Bin folder. If
you find that editing, adding, or deleting a template using
the Code Insight page of the Environment Options dialog
box is awkward, you can edit this ASCII file directly.

Tooltip Expression Evaluation
Tooltip Expression Evaluation is a feature of Delphi’s inte-
grated debugger. It permits you to easily inspect the value of
expressions at run time without having to resort to using
Run | Evaluate/Modify, or setting watches. Instead, all you
need to do is position your mouse over an expression, and the
value of that expression will be displayed in a fly-by window,
as shown in Figure 9.

Sometimes the value of an expression is unavailable because of
compiler optimizations. If this is the case, the fly-by window will
indicate the value is unavailable. You can reduce the likelihood of
this happening with Tooltip Expression Evaluation by un-check-
ing the Optimization checkbox on the Compiler page of the
Project Options dialog box. However, remember to turn compiler
optimizations back on before testing and delivering your project.

Controlling Code Insight
The features of Code Insight are controlled from the Code
Insight page of the Environment Options dialog box. Code
Completion, Code Parameters, and Tooltip Expression

DBNavigator
Evaluation are enabled and disabled using the checkboxes at the
top of this dialog box. If you disable either Code Completion or
Code Parameters, you can still access these Code Insight features
by pressing CM and CSM, respectively.
However, I know of no way to access Tooltip Expression
Evaluation if you disable this automatic feature. The Delay track-
bar permits you to control how long Code Insight waits before
automatically displaying the enabled Code Insight features.

Conclusion
Code Insight is a valuable new productivity tool for Delphi 3
developers. It can significantly reduce keystrokes, and the
time you spend in Delphi’s online Help. ∆

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi in
Depth [Osborne McGraw-Hill, 1996]. He is also a Contributing Editor of Delphi
Informant, and was a member of the Delphi Advisory Board for the 1997 Borland
Developers Conference. For information concerning Jensen Data Systems’ Delphi con-
sulting and training services, visit the Jensen Data Systems Web site at
http://idt.net/~jdsi. You can also reach Jensen Data Systems at (281) 359-3311,
or via e-mail at cjensen@compuserve.com.
22 February 1998 Delphi Informant

http://idt.net/~jdsi

23 February 1998 Delphi Informant

OP Tech
Delphi 3

By Adam Chace

Figure 1: Adding and removin
What’s in the Package?
Design-time and Run-time Packages in Delphi 3

Packages offer Delphi developers a new way to deploy applications with run-
time libraries. Forget the hassles of trying to incorporate VCL objects into

standard DLLs; with Delphi 3’s new packages feature, deploying shared
libraries of Delphi units and components is a cinch, and you don’t have to
change a single line of code. This article will provide an overview of what pack-
ages are, and how to use them.
g
Like standard DLLs, packages are essentially
just bundles of code that are referenced by a
given application, be it an .EXE, an
ActiveX control, a .DLL, or even another
package. Borland has given packages a
.DPL extension to differentiate them from
common DLLs, but their architecture is
almost identical to any implicitly linked
design-time packages.
DLL. These libraries are used at design time
by the IDE, and can then be incorporated
at run time by your application.

The .DPL file isn’t the only file associated
with a package, however. There’s also the
.DCP file, a single file collection of all the
DCUs your package contains; and the
.DPK file, the editor file that specifies
which .PAS files a particular package con-
tains, and which .DPL files a package
requires. The .DCP file is only of interest if
a package is distributed without source code
or the associated DCUs. In these cases, the
.DCP file is used when you compile your
package. The .DPK file is used any time
you edit a package, as we’ll soon see, and is
modified every time you add or remove
items to or from a package.

The New Component Palette Model
Although you may not know it, if you’ve devel-
oped in Delphi 3, you’re already using this new
feature. That’s because the VCL model has
been replaced with a new one, based entirely
on design-time packages. Design-time packages
are the new way of installing and removing
components in Delphi. The Delphi 3
Component palette is made up entirely of
design-time packages, which in turn, are collec-
tions of Delphi components and units. To con-
figure the palette, select Project | Options and
click on the Packages tab to display the dialog
box shown in Figure 1.

OP Tech
From this dialog box, you can load and unload packages of
components without having to recompile your entire
Component palette (unlike previous Delphi versions). This is
a major time saver, especially if you’re doing a lot of switching
between projects. You can also get a quick snapshot of what
components a particular package contains by clicking on the
Components button. Adding or removing packages is simply a
matter of selecting the .DPL file you want by checking or
unchecking the box, and clicking Add or Remove. Once you
add a new package, Delphi displays the message box shown
in Figure 2, telling you whether the package was successfully
installed, and if so, what components were added as a result.

From this dialog box, we can also edit any packages for
which we have the .DPK file. If we highlight a package and
click Edit, we’ll see a dialog box that allows us to specify
which components and units this package contains, as well
as any other packages it requires (see Figure 3). This form
also provides access to the package options (which allow us
to specify whether this package is a run-time or a design-
Figure 3: Editing package contents.

Figure 2: Delphi tells what components the package has installed.

Figure 4: Installing “loose” components.

24 February 1998 Delphi Informant
time package, or both), the package description, compiler
information, directory information, and other pertinent
details about this particular package.

Using Non-package-based Components in Delphi 3
Soon, most of your third-party components will be distrib-
uted in the form of design-time packages. But what about
your old components, or newer components that aren’t in
packages? Can you still use these in Delphi 3?

The answer, of course, is yes. Borland has provided an
empty design-time package named DCLUSR30.DPL. Any
non-package-based component can be placed in it. To
place a component in this package, select Components |

Install to display the dialog box shown in Figure 4. All you
need to do is select your .PAS or .DCU file, and you’re
done. As long as there are no errors in the code, the com-
ponent will install automatically as the package is loaded
onto the palette.

If you are adding DCUs this way, make sure they
were compiled in Delphi 3, because the DCU
architecture has changed. If you don’t have the
source code for a component that wasn’t com-
piled in Delphi 3, then you’ll be unable to install
the component into a package.

Running with Packages
That about covers design-time packages, which,
for the most part, were created to make configur-

ing the palette quicker and easier. Now, we get into the more
interesting topic of run-time packages. Run-time packages are
typically the same .DPL file as their design-time counterpart,
but are used in deployment rather than development. With a
typical Delphi application, all the necessary code for compo-
nents and units used in the application is compiled directly
into the executable, but this can produce a large executable
that can be tedious to update, especially if it is being done via
modem or the Internet. Building your project with run-time
packages allows you to reduce your update size at the cost of
a larger initial deployment. The initial delivery must include
your using application (.EXE, .DLL, etc.) and all the required
run-time packages. Once these packages are delivered, only
the using application needs to be updated, as long as no code
in the library files is changed.

Let’s see an example of the impact of using run-time pack-
ages. The application, PACK.EXE, was built as a single form
with a Label, Edit, DataSource, Table, ClientSocket, and
DBListBox component on it. Each of these components is
contained in a design-time package, and has a corresponding
run-time package (which again, is usually just the same file).
If we were to compile this application conventionally, we
would see it has a file size of 392,192 bytes (see Figure 5).

Now, we want to indicate that we will be distributing this appli-
cation not as a single executable, but rather as an executable
with run-time packages. To do so, we select Project | Options

Figure 5: Our application compiled without using packages.

Figure 6: Choosing to build with packages.

OP Tech

Figure 7: The same application compiled with run-time
packages.
and click the Build with runtime packages checkbox (see
Figure 6). We can now, if desired, add or remove any run-
time packages from this list.

Why would we want to remove a package name from this
list at this point? Say, for instance, we’re using a single
function in a single unit included in a large package. We
may want to simply compile the code into the executable,
rather than deploy a sizable file for only one function. We
may also know that we will be updating a particular com-
ponent a great deal for this application. Because we ideally
want components and code in packages to be static, we
would avoid having to constantly update this .DPL file
and the executable by removing the run-time package that
it’s contained in from this list.

Once you’ve decided whether you want to remove any files from
this list, click OK, and build the application. It’s important to
25 February 1998 Delphi Informant
note that although a run-time package appears in the list, it will
only be required by the executable if it uses code contained in
that package. It isn’t necessary to go through this list and remove
those that you don’t think you need. The compiler takes care of
referencing the packages used for you. So, once we click Build, we
see the application is now only 13,312 bytes (see Figure 7)!

The next step is to determine which run-time packages
need to be distributed with this application. We can do this
in several ways:

Determine which design-time packages are used by your
application, and create a list of their corresponding run-
time packages.
Examine the application with an editor like Windows Quick
View, and note the .DPL files that are referenced in the file.
If it’s an .EXE or a .DLL, use a freeware tool like PFinder
to obtain the list.
Because we have built a simple Windows executable, we
can use PFinder to create the list, as shown in Figure 8.
(This free utility is available from Apogee Information
Systems, Inc., and can be downloaded from
http://www.apogeeis.com/delphi.)

Now, we simply need to deploy VCL30.DPL, VCLDB30.DPL,
and INET30.DPL once, with our executable. After that, as the
project changes, we can update our 13KB executable. This is
especially helpful during the testing phase of a project, where
you may be distributing new builds of an application daily.

Another benefit of using run-time packages is that a user-
machine, like standard DLLs, only needs one copy of any
one package. So, if a project will be distributed as a suite of
using applications, you can save a lot of space by only
deploying the components they share once in a run-time
package, rather than redundantly compiling the component
code into each using program.

That’s all there is to it. Run-time packages are an easy way to
reduce your deployment costs, and you don’t need to make

http://www.apogeeis.com/delphi

Figure 8: PFinder package-listing utility.

OP Tech
any coding changes. In fact, you can decide to deploy with
run-time packages as late as your very last build, without hav-
ing to be concerned with the issues of conventional DLLs.

Conclusion
As we have seen, packages are an exciting new feature for
Delphi programmers to exploit. While design-time packages
streamline the use of the component library, run-time pack-
ages provide the real power. Delphi programmers can easily
segment and distribute portions of functionality, independent
of the .EXE file. This significantly reduces the amount of
effort involved with distributing application updates. ∆

Adam Chace is an Application Developer with Apogee Information Systems, Inc.,
a Boston-based consulting firm specializing in Delphi Client/Server systems. He
presented “Packages in Delphi 3” at the 8th annual Borland Developers
Conference in Nashville, TN and is a Delphi 3 Client/Server certified developer.
You can reach him at achace@apogeeis.com.
26 February 1998 Delphi Informant

27 February 1998 Delphi Informant

On The Net
Delphi 3 Client/Server Suite

By Keith Wood
Picture This on the Web
A CGI Program to Deliver Database Pictures

Delphi 3 makes the creation of Internet-capable programs even easier than
previous versions of Delphi. It contains basic classes that provide the nec-

essary functionality to produce applications that run as ISAPI or NSAPI exten-
sions, or as Common Gateway Interface (CGI) or Win-CGI executables.
This article explores the requirements for
generating a CGI program with Delphi 3. It
looks at the new Web module components,
and how they interact with the HyperText
Transfer Protocol (HTTP) to create a docu-
ment in response to a request. To show how
this works, we’ll build a CGI program that
delivers pictures from a database.
Delphi’s Web Components
Delphi 3 Client/Server Suite provides several
new components designed to ease the process
of creating Web-aware programs. These com-
ponents, defined in the HTTPApp,
ISAPIApp, CGIApp, and DbWeb units, are
described here. Their relationship to each
other is shown in Figure 1.

In a Web program, TWebApplication replaces
the normal application object. It must be
subclassed to handle the different versions of
Web extensions available. When its Run
method is called, it creates wrappers for the
incoming request and outgoing response,
before searching for a Web dispatcher to
translate between the two.

TWebModule is derived from TDataModule
via TCustomWebDispatcher, and so provides a
visual work area on which to develop our
application. On this form, we can add other
Web components and/or database-access con-
trols. Built into this component is the ability
to dispatch Web requests to different actions,
based on the additional path information that
accompanies the request. These are dealt with
by the Web action items.

A TWebActionItem is invoked by a TWebModule
when its particular path information is received
with a request. Having multiple action items in
our program allows us to respond differently to
requests that have some common basis. For
each action, we can specify the type of HTTP

On the Net
request to respond to, the extra path to look for, and whether it’s
the default for the module. Finally, we supply a handler for the
OnAction event to actually construct the response.

TWebRequest encapsulates an HTTP request that is received and
processed by our program. It provides access to the details about
that request, including any parameters that are sent by the client.
This component is subclassed to allow the different types of
Web extensions to retrieve the data in the appropriate way.

TWebResponse allows us to easily send a reply. It has methods
that accept the document we generate, and deliver it back
through the Web server to the client. Input for the document
can be supplied as text, as a redirection, or from a stream.
Again, this component is subclassed to deal with the differing
ways of handling Web requests.

TPageProducer handles the generation of an HTML docu-
ment in an easy-to-use manner. It contains the text of the
28 February 1998 Delphi Informant

<HTML>

<HEAD>

<TITLE>Sample Page</TITLE>

</HEAD>

<BODY>

<H2>Sample Page</H2>

<P>This page displays a single image below:</P>

</BODY>

</HTML>

Figure 2: Sample HTML referencing an image.

Figure 1: The object model of new Web components.
document internally, or the name of a file that provides this
text. References to substitution tags, delimited by the usual
angle brackets and starting with a pound sign (#), can be
embedded in the document. Each tag has an identifier associ-
ated with it, and these are used in the OnHTMLTag event to
provide the appropriate replacement text.

TQueryTableProducer and TDataSetTableProducer provide an
easy way to generate an HTML table from the contents of a
query or table attached to a database. Its properties allow
header and footer text to be specified, as well as control the
appearance of the HTML table and its columns and rows.
For specialized formatting, the OnFormatCell event is used to
manipulate the cell contents even further, such as including a
hypertext link.

Using object-oriented techniques, Delphi 3 allows us to build
a single Web-response program, and have it work with all the
standard extension formats: ISAPI/NSAPI, CGI, and Win-
CGI. All we need to do is change the Web module wrapper
and recompile.

Let’s put all of this together to produce a CGI application
that extracts a picture from a database record, and returns it
to the Web browser client.

Web Graphics
HTML documents define what appears on Web pages. It
consists of straight text, interspersed with formatting and
metadata commands (tags), which are delimited by angle
brackets (< >). These tags allow the specification of headings
and character and paragraph formatting, as well as define the
links that make the Web what it is.

Another tag allows images to be included on the page. The
graphics that are displayed this way are usually in one of two
formats (.GIF or .JPEG), but the images themselves are not
contained in the HTML document. The tag simply has a
reference to another Web document that provides the con-
tent. See Figure 2 for an example of an HTML page that
displays an image.

When the browser receives a document containing one of
these tags, it must send another request to retrieve the pic-
ture. To distinguish between the different document types
available on the Web, MIME (Multipurpose Internet Mail
Extensions) encoding is used. This includes a two-part type
to describe the contents of a document. Normal Web pages
have the type text/html, while the two standard image for-
mats are image/gif and image/jpeg, respectively. Web servers
can be set up to automatically supply this content encoding
as part of the response to a client, based on the extension of
the file requested.

Usually, these images are stored in separate files on the Web
server. With a large site, managing these files can be diffi-
cult. If, instead, we use a database to manage these pictures,
then we need a way of extracting them again for delivery
over the Web.

Field Name Format Comment
PICTURE_NO AutoIncrement Unique id for each imag
PICTURE_TEXT Alpha 30 Description of the image
PICTURE_TYPE Alpha 30 The MIME type of the im
PICTURE_BLOB BLOB The actual image

Figure 3: Fields in the demonstration table.

On the Net
Delivering Graphics
To deliver a picture in response to a client request, we
need to duplicate what the server would do with a file.
This means we must supply the document type, along with
other metadata, which describe the length of the response,
and indicate its beginning. After these headers, we send
the actual content of the image in its original binary for-
mat. Obviously, this comes from a BLOB field in the data-
base table.

For the purposes of this article, we’ll create a very simple
database table that has the minimum fields necessary to
effect delivery of the images. We’ll then generate a Paradox
29 February 1998 Delphi Informant

Figure 4: Deliver a picture across the Web.
table specifying the fields (see Figure 3), using the
Database Desktop tool. Save the table as WebPics.db.

To load appropriate pictures into the database, use the
WPLoad program that accompanies this article (see end
of article for download details). It allows us to browse
for files that contain .GIF or .JPEG images, and to

place these in the database with a description. The image type
is automatically extracted from the file, and is placed in the
type field.

We also need to add an alias in the BDE to reference this new
table. The alias is WebPics, and its path is set to point to the
directory that contains the database table we just created.

Building the Web Module
The first step in creating our new Web module is to call on
the Web Server Application expert. To do this, select File |

New, and then the Web Server Application icon. Here, we are
asked what type of Web module we require. In this case,
select CGI, and press OK.

e

age
{ Load details about a scheme from the registry. }
function TwmdWebPics.LoadScheme(sId: string): Boolean;
begin

Result := True;

with regSchemes do
try

if not OpenKey(sRegKey + '\' + sId, False) then
Abort;

sSchemeId := sId;

sSchemeName := ReadString(sNameKey);

sAliasName := ReadString(sAliasKey);

sUserId := ReadString(sUserKey);

sPassword := Coded(ReadString(sPasswordKey));

slsOtherParams.Text := ReadString(sOtherKey);

sTableName := ReadString(sTableKey);

sKeyField := ReadString(sKeyKey);

sBlobField := ReadString(sBlobKey);

sTypeField := ReadString(sTypeKey);

except
Result := False;

end;
end;

{ Extract a picture from the database and return it. }
procedure TwmdWebPics.wmdWebPicswacGetPicAction(

Sender: TObject; Request: TWebRequest;

Response: TWebResponse; var Handled: Boolean);

var
sSelect: string;
stmHeader: TStringStream;

begin
SetFields;

{ Check for valid scheme. }
if not LoadScheme(slsHTTPFields.Values['SCHEME']) then

Response.StatusCode := 400

else
begin
{ Initialize database with scheme details. }
with dbsWebPics do begin
AliasName := sAliasName;

Params.Clear;

if sUserId <> '' then
Params.Add('username=' + sUserId);

if sPassword <> '' then
Params.Add('password=' + sPassword);
if slsOtherParams.Count > 0 then
Params.AddStrings(slsOtherParams);

Open;

end;

{ Find the required record and extract the image. }
with Response, qryWebPics do
try
sSelect := sBlobField;

if sTypeField <> '' then
sSelect := sSelect + ', ' + sTypeField;

SQL.Clear;

SQL.Add('SELECT ' + sSelect);

SQL.Add('FROM ' + sTableName);

SQL.Add('WHERE ' + sKeyField + ' = ' +

slsHTTPFields.Values['ID']);

Open;

try
ContentStream := TBlobStream.Create(

TBlobField(FieldByName(sBlobField)), bmRead);

{ Set image type. }
if sTypeField <> '' then

ContentType :=

FieldByName(sTypeField).AsString

else
try
stmHeader := TStringStream.Create('');

stmHeader.CopyFrom(ContentStream, 0);

ContentStream.Position := 0;

if Pos('JFIF',Copy(stmHeader.DataString,

1,10)) = 7 then
ContentType := 'image/jpeg'

else if Pos('GIF', Copy(

stmHeader.DataString,1,10)) = 1 then
ContentType := 'image/gif';

finally
stmHeader.Free;

end;
except
StatusCode := 500;

end;
except
StatusCode := 404;

end;
end;

end;

On the Net
We are presented with a blank Web module, wrapped in the
code appropriate for a CGI application. Place a Query com-
ponent on the Web module, and enter the SQL code to
extract the image type and the BLOB field, selecting a para-
meter for the record id.

Next, double-click on the Web module itself, or on its Actions
property in the Property Inspector, to display the Web actions
editor. Add a new action, give it a name, and mark it as the
default. On the Events tab in the Object Inspector, create a
handler for its OnAction event.

In this event, we execute the query with the id value
passed in as a parameter (see the code in Figure 4). We
then attach the response to a stream created from the
BLOB field, and set the content type from the database
field. Some error handling caters for not being able to
open the database table. If no record is found for that id,
then no image is returned.

HTTP requests can be submitted to this program in two
ways: GET or POST. In a GET request, the user’s parame-
ters are appended to the URL itself after a question mark
(?). With a POST, the parameters arrive separately from
the URL.

Data passed in these ways end up in different properties of
the Request object, both with the same structure. To ease
processing in the remainder of the program, we determine
which property is active, depending on the MethodType,
and save a reference to it. All subsequent references to the
parameters then use this pointer:

{ Set pointer to request fields depending on request method. }
procedure TwmdWebPics.SetFields;

begin
if Request.MethodType = mtPost then

slsHTTPFields := Request.ContentFields

else
slsHTTPFields := Request.QueryFields;

end;

Generic Picture Delivery
This works fine for our single database and its fields, but
what if we want this capability on any image in any database
table? We need to make the application more generic, and
enable it to be configured for each specific case, without hav-
ing to recompile it.

To access a database, we need several pieces of information:
the BDE alias, the user id, and a password. Furthermore, to
access a table and extract an image, we require the names of
the table, its key field, and the BLOB and image type fields.

For this exercise, we store all this data in the registry.
Under a common key, \Software\Kwood\WebPics, we
maintain one key for each database scheme that we wish to
access. Within this key are the individual values for the
data identified above. To hide the password from prying
eyes, a coding scheme is used. In this case, it’s a simple
30 February 1998 Delphi Informant
substitution cipher, but a safer one could be used if
deemed necessary.

To retrieve an image, we need two parameters with the
request: the id of the scheme to use, and the id of the
record that holds the picture. On processing such a request,
we must first read the registry, using the scheme id to
retrieve the other values. The connection ones are then
placed into a TDatabase object, and the database is opened.

Next, a query is constructed from the remaining values
and the record id. Once this is opened, we extract the
image and its type, and return these to the client (see
Figure 4).

As an added feature, if the image type field is not speci-
fied, we determine this from the picture itself. Each file
format has an identifying mark in its header. In the case of
.JPEG files this consists of the characters JFIF at positions
7 through 10 (starting from 1), while .GIF files start with
the string GIF.

Maintaining Schemes
Having the scheme details in the Windows registry makes
it more difficult to maintain them (as opposed to an .INI
file). So, we enhance the WebPics application to perform
this maintenance task as well. This requires an extra Web
action, added after double-clicking on the Web module
form, which we set to respond to the /config additional
path information.

If no additional parameters accompany the request, we dis-
play a list of all the schemes the program currently knows
about. This is achieved by using a TPageProducer component,
and responding to its OnHTMLTag event, to substitute for
the list of schemes. An HTML table is constructed in code to
replace the tag. If we were storing data in a database, we
could use a TQueryTableProducer or TDataSetTableProducer
component, instead. To protect against later name changes,
we use the Request.ScriptName property to fill in the HTML
when referring to the program itself.

From this list of schemes, the user can select links that allow
them to add a new scheme, update an existing one, or to
delete one. The add and update options pass back a hidden
parameter-called action, which is set to Get.

Along with this, the id of the scheme to retrieve (or zero
when adding) is specified. This action parameter is looked for
in the program, which causes it to generate a page containing
all the details for a single scheme, and allows these to be
altered. The pages come from two TPageProducer compo-
nents, where each page is set up as an HTML form. The
forms’ actions call the program again, passing back the fields
for a scheme.

After entering the requested data, the user sends the new
details, which now arrive with an action of Add or Update,

{ Accept request and perform configuration actions. }
procedure TwmdWebPics.wmdWebPicswacConfigureAction(

Sender: TObject; Request: TWebRequest;

Response: TWebResponse; var Handled: Boolean);

var
sAction: string;

begin
SetFields;

sAction := slsHTTPFields.Values['ACTION'];

{ Display a single scheme's details. }
if sAction = 'Get' then

begin
if slsHTTPFields.Values['ID'] = '0' then

Response.Content := wppAddScheme.Content

else if LoadScheme(slsHTTPFields.Values['ID']) then
Response.Content := wppUpdateScheme.Content

else
Response.StatusCode := 400;

end
else

{ Apply changes to the registry (if applicable) and
redisplay complete list. }

begin
if sAction = 'Delete' then

DeleteScheme

else if sAction = 'Add' then
AddScheme

else if sAction = 'Update' then
UpdateScheme;

Response.Content := wppListSchemes.Content;

end;
end;

Figure 5: Configuring the database schemes.

On the Net

Figure 6: The list of images from the database.

Figure 7: Showing a single image from the database.
these being the labels on the respective submit buttons. The
information is processed and stored in the registry.

If a delete link is selected (one for each scheme), the action
parameter reads Delete, and the id of the scheme is passed
along. The corresponding key in the registry is removed as
this request is processed.

Following an Add, Update, or Delete, the default action of
listing the schemes is performed again, ready for the next
activity. All of this processing can be seen in the code in
Figure 5.

So, to initiate a maintenance session with the WebPics pro-
gram, simply call it with the configuration directive attached:
http://localhost/cgi-bin/webpics.exe/config.

Demonstration
The WebPics CGI program is demonstrated through
another CGI application: ListPics. This was constructed in
the same manner as described above, and performs two
main actions.

The default action (see Figure 6), with no parameters, pro-
duces a Web page that lists the description and image type
for all the pictures in our database (up to a maximum of
20). Each has a hypertext link attached to it that displays
that image on its own page. The bulk of this processing is
done by a TDataSetTableProducer component and its
OnFormatCell event.
31 February 1998 Delphi Informant
The second action (see Figure 7), responding to the /single
additional path information, generates a page showing the
description of one image, its type, and the actual image
itself. It requires a parameter of the id for the record to be
displayed. In turn, it passes this on to the WebPics program
to extract the image from the database. Two TPageProducer
components are used to present the standard page or an
error page, as appropriate.

To view the HTML for each page, simply use the View |

Source option of your browser. The workings of this appli-
cation can be seen by looking at the code that accompanies
this article.

Conclusion
We’ve seen how we can create CGI Web applications using
Delphi 3’s new components. We’ve written a utility that can
deliver images out of a database and across the Web, as well as
an application to access those pictures easily.

Of course, just about anything can be stored in a BLOB field,
so this technique can be used to send sounds or even applets
and programs.

http://localhost/cgi-bin/webpics.exe/config

On the Net
A large part of the future seems to be involved in providing
content through the World Wide Web. Of even more use is
the ability to interact with the client in deciding what data
they want to see. Interpreting their requests, and constructing
an appropriate response, requires programming of some sort.
Using a fully fledged programming environment such as
Delphi allows us to perform just about any action required to
achieve this end. The new Web components of Delphi 3
make this even easier. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\FEB\DI9802KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Occasionally
working with Delphi, he has enjoyed exploring it since it first appeared. You can
reach him via e-mail at kwood@ccsc.com.
32 February 1998 Delphi Informant
While running this program through the WebSite Web
server, and viewing it with Netscape, I kept getting an
error message: “Unknown status reply from server: !0”.

Tracing the content sent from the Web server, it appeared
that the HTTP header was being incorrectly sent. It was
going as: “HTTP/1.0 OK”, rather than the required:
“HTTP/1.0 200 OK”.

To overcome this, I needed to modify the source code for
the CGIApp unit. When sending the response in the
SendResponse method of the TCGIResponse component, I
altered the first header line to provide the format above:

{ The following line did not appear to work with WebSite
server, so I replaced it with the one immediately below.

AddHeaderItem(StatusString, 'Status: %s'#13#10); }
AddHeaderItem(HTTPRequest.ProtocolVersion + ' ' +

StatusString, '%s'#13#10);

This version is available in the code accompanying this
article, as unit CGIApp2.

— Keith Wood

Status Problems

33 February 1998 Delphi Informant

New & Used

By Alan C. Moore, Ph.D.

Figure 1: Abbrevia’s hierarchy
visual components.
Abbrevia and LockBox
TurboPower’s New File/Data Manipulation Libraries

When we think of file/data manipulation, we generally think of the com-
mon operations of opening, saving, copying, deleting, and so forth. In

the changing world of information technology, two new operations must be
added to the list: encryption and compression. Of course, Delphi provides
excellent support for all the common operations, but practically none for the
last two.
Now, TurboPower has helped fill that void
with two of its newest component libraries:
Abbrevia, which provides support for work-
ing with PKZip-compatible files; and
LockBox, which supports the encrypting and
decrypting of files. While the two libraries
are quite different, there’s at least one situa-
tion in which I can imagine using the two of
them together: transmitting sensitive data
over the Internet.

I’ll begin by discussing each of these libraries
separately, concentrating on their uses and
their special features. Then I’ll examine some
of the common features in both libraries.
We’ll begin with Abbrevia, then turn our
attention to LockBox.

The Many Ways to Zip
It’s difficult to imagine any pro-
grammer reading this who’s not
familiar with compressed files,
particularly PKZip files. That
particular application, or more
precisely collection of applica-
tions, is one of the great share-
ware success stories. So much so
that the PKZip-compression
method has become the de facto
standard in the computer indus-
try. Many applications, includ-
ing Norton Navigator for
Windows 95, now include sup-
port for PKZip-compatible files.
With Abbrevia, any Delphi (or

 of non-
C++Builder) programmer can now add such
support. Exactly what kind of support are we
talking about? Let’s see.

Abbrevia supports the compressing and
decompressing of files, adding them to, or
deleting them from, an archive, and view-
ing the contents of an archive — all com-
mon operations. It also provides support
for some of the less common operations,
including creating a self-extracting archive
(an .EXE file that, when executed, extracts
all the archived files stored within it), and
even compressing or decompressing on-the-
fly without saving to a file. Let’s take a
look at the components and classes that
make this possible.

Abbrevia consists of one visual component,
several non-visual components, and various
low-level support classes. For most applica-
tions you can select one or more compo-
nents to provide the functionality you
need. When you need greater control, you
can use the same support classes the com-
ponents use. The hierarchy of non-visual
components is shown in Figure 1; the
hierarchy of support classes is shown in
Figure 2. Note that all the support classes
are derived from TObject. TAbArchiveItem
describes a single file in an archive while
TAbArchive describes an entire archive.
Both classes are abstract. Two useful classes
are descended from these: TAbZipItem and
TAbZipArchive, respectively.

New & Used
Powerful and Flexible
Non-visual Components
As you can see from Figure 1,
just about all the non-visual
components are based on
custom components whose
properties are defined but
not published. This makes it
easy to derive your own spe-
cialized components, but I
doubt it would ever be nec-

essary. As the name implies, TAbZipBrowser allows you to
inspect the contents of an archive, but not perform any other
operations, such as extracting or adding files.

Two derivatives of this component, TAbUnZipper and
TAbZipper, provide the additional functionality. Both inherit
useful properties from TAbZipBrowser, which
allow you to set the base directory for adding
and extracting files, the file name of the
archive itself, and the Items array that contains
the names of the files in the archive. There are
also several useful events. Particularly impor-
tant is OnProcessItemFailure, which allows you
to handle exceptions that arise in working with
files in an archive.

The extracting component, TAbUnZipper,
adds a few new properties related to extract-
ing files and using password protection. Its
method, ExtractFiles, takes care of the
drudgery of extracting the files from the
archive. Events such as OnConfirmOverwrite
and OnNeedPassword give you and your users
a good deal of flexibility in unzipping files.

The archive-building component, TAbZipper, adds new prop-
erties and events. The CompressionMethodToUse property
determines how files will be stored in an archive. The AutoSave
property controls when changes are made. The DosMode prop-
erty can be used to make an archive DOS compatible (restrict-
ed to DOS-compatible filenames). The AddFiles method
allows you to easily add files to an archive. Events such as
OnConfirmSave and OnRequestBlankDisk allow you to antici-
pate and handle a variety of file compression scenarios.

The last of the non-visual components, TAbZipKit, combines
the functionality of the previous two components and adds a
powerful new feature: the ability to work with hidden compres-
sion. What is hidden compression? It’s transparently compress-
ing an application’s data files upon exiting, and decompressing
them when the application is loaded. This technique would be
especially useful with large data files or with data files to which
the user needs to add password protection for security reasons.

We’ll be discussing data security in some detail shortly
when we examine the LockBox library, but first let’s take a
look at Abbrevia’s crowning glory: TAbZipOutline (see
Figures 3 and 4).

Figure 2: Abbrevia’s hierarchy
of support classes.

Figure 3: Abbre
34 February 1998 Delphi Informant
Power, Flexibility, and Ease of Use
If, for some reason, you need or want to control the visual inter-
face, the non-visual components we’ve been discussing so far
will meet your needs. However, Abbrevia’s TAbZipOutline com-
ponent makes it even easier to provide compression capabilities
for your applications. It’s descended from TwinComponent, not
TOutline, to prevent access to some of the latter’s methods and
properties that would be inappropriate here. It provides all the
functionality of the TAbZipKit component along with an out-
line display appropriate for viewing and working with the files
in a PKZip-compatible archive.

Figure 3, taken from one of the example programs, shows
this component in use. There are a few more features of this
library I want to describe, particularly the low-level com-
pression classes. I will postpone that discussion, however,
until we look at the common features in Abbrevia and

Figure 4: Abbrevia’s crowning glory, its visual component,
TAbZipOutline.

via’s main example program showing all of the .ZIP file functionality.

Name Type Key Spe
Size mil

Triple Data Encryption Standard Block 128 360
Data Encryption Standard (DES) Block 56 270
Blowfish Cipher Block 128 250
LockBox Quick Cipher Block 128 210
LockBox Cipher Block 128 160
Random Number Generator 64-bit Stream 64 120
Random Number Generator 32-bit Stream 32 70
LockBox Stream Cipher Stream 128 60

Figure 5: The ciphers available in LockBox.

New & Used

Figure 6: LockBox’s example program, ExLBox, demonstrating
the use of block ciphers.
LockBox. Now let’s put on our spy outfits and enter the
world of cryptography.

Data Security with LockBox
Like Abbrevia, LockBox provides many options and several lev-
els at which you can work. Before starting this review, I wasn’t
aware of the variety of data-encryption methods available. The
methods in LockBox fall into two general groups: those using
block processing and those related to streams. Within these you
can choose from many encryption algorithms and key sizes,
depending on the requirements of your application. Generally,
there is a tradeoff between the degree of security and speed of
execution. The tougher you make your data-encryption system
to crack, the longer the data processing will take.

Figure 5 summarizes the different ciphers available in
LockBox. You’ll notice a number of obvious patterns. While
key size is one of the factors related to speed (the larger the
key, the slower the processing), it’s by no means the only one.
Key size is also one of the main factors in ensuring security.
You can’t decipher data without the key used to encrypt it. So
the question becomes: What’s the maximum amount of time
35 February 1998 Delphi Informant
it takes to find the key by trying all the possi-
ble combinations? The manual discusses this
issue in some detail. Byte magazine points out
that, while a 40-bit DES key could be cracked
in about 0.4 seconds, a 128-bit DES key could
take up to 157,129,203,952,300,000 years!

Regarding the available options, Figure 5 doesn’t
tell the complete story. Each of the five block
ciphers comes in two forms: one using
Electronic Codebook (ECB) mode and one

using Cipher Block Chaining (CBC) mode. While ECB is
slightly faster, CBC offers greater security because it uses the
encryption results from processing the previous block to process
the current block. Then we have the various stream modes.

All the stream methods are faster than the block methods.
The Triple Data Encryption Standard is by far the slowest
because it uses a 128-bit key and applies the DES encryption
algorithm to the data three times. Generally, block and stream
ciphers are appropriate for different programming situations:
Block ciphers work well with data in memory while stream
ciphers are ideal for operations involving files. I’ll have more
to say about the latter when I discuss the stream support in
LockBox and Abbrevia. The block ciphers are demonstrated
fully in the example program, ExLBox (see Figure 6). You can
use this program to test the relative speed of the various
methods. In addition to its many encryption methods,
LockBox also provides helpful programming choices.

Low or High: Choose Your Level
As with many of its other component libraries, TurboPower’s
LockBox provides you with the option of working with low-
level API routines or high-level classes. The low-level routines
give you more control while the high-level classes make your
work easier. The low-level routines fall into several groups:

GenerateXKey (where X is one of several key types)
allows you to generate the random key to use in
encrypting/decrypting data.
InitEncryptX (where X can be any of the first seven
basic encryption methods) allows you to prepare the
encryption system.
EncrytX (where X can be any of 13 encryption methods)
allows you to encrypt or decrypt data.

LockBox provides high-level classes for working with memory
or file steams (which we’ll discuss soon) and high-level proce-
dures and functions for working with any of its encryption
methods (stream based or block based). Some of the later rou-
tines encapsulate the functionality of the low-level routines we
looked at earlier, and add file-writing capabilities. Others allow
you to create your own key-generation procedure(s) using one
of several hashing algorithms. By now you should have a good
idea of the main features of both of these libraries. Now let’s
discuss some of the common features of the two libraries.

Flowing with the Stream
As Ray Lischner points out in Secrets of Delphi 2 [Waite
Group Press, 1996], streams are the preferred way of working

ed (in
liseconds)

Figure 7: The example program, CryptFile, demonstrating the
use of stream ciphers.

Figure 8: A new sample program, ConfiZip, using components
from Abbrevia and routines from LockBox to encrypt and com-
press confidential messages.

New & Used
with files in Delphi. They give you the ability to work with
data in memory and copy data structures from one medium
to another (e.g. memory to file). Both these libraries take
advantage of this, and in doing so increase their value to us.

Abbrevia includes two routines (always used together) that
allow you to compress and decompress data without hav-
ing to hassle with intermediary files. Using DeflateStream,
you can save an application’s data files in compressed form
when you, or your users, are finished with them, then load
them again when needed. All this is handled transparently.

Likewise, LockBox provides stream classes, which allow you
to save encrypted data to a file and later retrieve it using
one of six encryption methods. Figure 7 shows an example
program, CryptFile, that demonstrates the use of stream
ciphers. Here again, the encryption is handled automatical-
ly and is completely transparent to the user. From a security
point of view, it’s nearly impossible for anyone to make
sense of the data stored in the encrypted file without first
knowing the method used and the encryption key.

As a bonus, I’ve included a sample program with this article,
ConfiZip, which uses components from Abbrevia and rou-
tines from LockBox. It first encrypts a text file (using
Abbrevia’s built-in password dialog box) then saves the file in
compressed format. Naturally, the program also allows you to
reverse this process. Figure 8 shows the layout of the main
form; the code for the main form is given in Listing Three
(on page 37) and indicates how little programming is
required to take advantage of these component/class libraries.
(You can download all the source code and the 32-bit exe-
cutable file: see end of article for details).

Other Common Features: Quality We’ve Come to Expect
TurboPower’s excellent tradition of documentation continues
with these libraries. And, of course, the manuals include a full
description of all the components (Abbrevia), classes, and low-
level routines. In addition, each manual provides an excellent
introduction to the area of programming it addresses, data com-
pression and data encryption, respectively. In Abbrevia, you learn
36 February 1998 Delphi Informant
a little of the history of data compression, its various methods,
and sources of additional information. In LockBox, you learn
detailed information about the various encryption methods, the
importance of keys, and the uses for stream and block methods.
Again, there’s a list of references if you wish to learn more.

As with TurboPower’s other libraries, Abbrevia and LockBox
include comprehensive online Help (mirroring the material in
the manuals), full source code, and excellent example programs.
This company continues to provide free technical assistance
and a 60-day, money-back guarantee for its products. You can
download a fully functional demonstration version of Abbrevia
from TurboPower’s Web site, and find out first hand if it meets
your needs. There’s no demonstration version of LockBox
because some of its encryption methods are too powerful to be
exported from the United States.

Conclusion
Using native Delphi classes and components, Abbrevia and
LockBox provide excellent com-
pression and encryption func-
tionality for Delphi program-
mers. Once again, TurboPower
demonstrates its leadership in
the third-party Delphi market-
place. That leadership is based
on meticulous attention to
detail, excellent documentation,
and responsiveness to the needs
and wishes of customers. If you
need to add PKZip-compatible
compression or high-level
encryption to your applications,
I think you will be more than
satisfied with these excellent
products. ∆

The files referenced in this article
are available on the Delphi
Informant Works CD located in
INFORM\98\FEB\DI9802AM.

Abbrevia is an excellent collection of
components and classes that provides a
complete solution to working with PKZip-
compatible files. Its crowning glory,
TAbZipOutline, allows you to easily work
with any of the files in an archive (e.g.
browsing, adding, or retrieving). LockBox
is a comprehensive collection of encryp-
tion/decryption classes and low-level rou-
tines for adding data security to an appli-
cation. It includes a large number of
options to cover various programming sit-
uations and needs. Both libraries provide
support for Delphi streams, and come
with excellent documentation and exam-
ple programs. Abbrevia is available in a
demonstration version. Both come with a
60-day, money-back guarantee.

TurboPower Software Company
P.O. Box 49009
Colorado Springs, CO 80949-9009
Phone: (800) 333-4160 or (719) 260-9136
Fax: (719) 260-7151
Web Site: http://www.turbopower.com
Price: Abbrevia, US$199; LockBox, US$249
(available only in the US and Canada).

http://www.turbopower.com

New & Used
Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabilities
in applications, particularly sound and music. You can reach Alan at
acmdoc@aol.com.
Begin Listing Three — Unit ConfZipU;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Buttons, AbZipper, AbArcTyp,

AbZBrows, AbUnZper;

type
TForm1 = class(TForm)

Memo1: TMemo;

Label1: TLabel;

EncryptAndCompressBtn1: TBitBtn;

DecryptAndDecompressBtn1: TBitBtn;

BitBtn1: TBitBtn;

OpenDialog1: TOpenDialog;

SaveDialog1: TSaveDialog;

AbUnZipper1: TAbUnZipper;

AbZipper1: TAbZipper;

procedure EncryptAndCompressBtn1Click(Sender: TObject);

procedure DecryptAndDecompressBtn1Click(

Sender: TObject);

private
{ Private declarations }
EncryptPassword : string;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

uses
Abdlgpwd, LbProc, LbCipher;

{$R *.DFM}

procedure TForm1.EncryptAndCompressBtn1Click(Sender: TObject);

var
Dlg : TPassWordDlg;

Key : TKey128;

EncryptedFile : string;
begin

if (Memo1.text='') then
begin

MessageDlg('You haven't entered any text to save',

mtError, [mbOK], 0);

Exit;

end;

Dlg := TPassWordDlg.Create(Application);

EncryptPassword := '';

try
Dlg.ShowModal;

if Dlg.ModalResult = mrOK then
EncryptPassword := Dlg.Edit1.Text;

finally
Dlg.Free;

end;
37 February 1998 Delphi Informant
if EncryptPassword = '' then
Exit;

ChDir(ExtractFilePath(Application.ExeName));

SaveDialog1.Title :=

'Enter Name of Text File to Archive';

SaveDialog1.Filter := 'Text files (*.txt)|*.TXT';

if SaveDialog1.Execute then
begin

if Pos('.', SaveDialog1.FileName) = 0 then
SaveDialog1.FileName :=

Concat(SaveDialog1.FileName, '.txt');

try
Memo1.Lines.SaveToFile(ChangeFileExt(

SaveDialog1.FileName, '.txt'));

finally
end;

with AbZipper1 do begin
BaseDirectory :=

ExtractFilePath(SaveDialog1.FileName);

AbZipper1.Filename :=

ChangeFileExt(SaveDialog1.FileName, '.zip');

EncryptedFile :=

ChangeFileExt(SaveDialog1.FileName, '.xxx');

GenerateLMDKey(Key, SizeOf(Key), EncryptPassword);

LBCEncryptFile(SaveDialog1.FileName, EncryptedFile,

Key, 16, True);

AddFiles(SaveDialog1.FileName, 0);

Save;

end;

if MessageDlg('Delete Text File?', mtConfirmation,

[mbOK, mbCancel], 0) = idOK then
DeleteFile(ChangeFileExt(SaveDialog1.FileName,

'.txt'));

end;
end;

procedure TForm1.DecryptAndDecompressBtn1Click(

Sender: TObject);

var
TextFile : string;
Dlg : TPassWordDlg;

Key : TKey128;

EncryptedFile : string;
begin

Dlg := TPassWordDlg.Create(Application);

EncryptPassword := '';

try
Dlg.ShowModal;

if Dlg.ModalResult = mrOK then
EncryptPassword := Dlg.Edit1.Text;

finally
Dlg.Free;

end;

if EncryptPassword = '' then
Exit;

OpenDialog1.Title := 'Open Zip File';

OpenDialog1.Filter := 'Zip files (*.zip)|*.ZIP';

if OpenDialog1.Execute then
begin

TextFile := ExtractFileName(ChangeFileExt(

OpenDialog1.FileName,'.txt'));

EncryptedFile :=

ChangeFileExt(OpenDialog1.FileName,'.xxx');

with AbUnZipper1 do begin
BaseDirectory :=

ExtractFilePath(OpenDialog1.FileName);

ChDir(BaseDirectory);

New & Used
Filename := OpenDialog1.FileName;

ExtractFiles(EncryptedFile);

GenerateLMDKey(Key, SizeOf(Key), EncryptPassword);

LBCEncryptFile(EncryptedFile, TextFile,

Key, 16, False);

end;

try
Memo1.Lines.LoadFromFile(TextFile);

finally
end;

end;
end;

end.

End Listing Three
38 February 1998 Delphi Informant

TextFile

High Performance Delphi 3 Programming

High Performance Delphi 3
Programming is a repackag-
ing of last year’s unfortu-
nately titled Kick Ass Delphi
Programming. Publisher
Keith Weiskamp explained
that the original titles in the
Kick Ass series met some
resistance with stores’ buy-
ing agents, making it diffi-
cult to get these valuable
volumes into the hands of
programmers. In this reti-
tled edition, a handful of
new chapters have been
added, and one has been
removed; however, the rest
of the text remains funda-
mentally the same.

The reader will find no
introductory Delphi or
Object Pascal material here;
the book’s intended user level
is accurately labeled as
Intermediate to Advanced.
The material and topics are
spread evenly across this
spectrum. Seven authors
contribute to the work, with
each exhibiting a vastly dif-
ferent style.

Jim Mischel authored four
useful chapters about
advanced utility topics; the
first three of these appeared
in the book’s previous edi-
tion. Chapters covering con-
sole applications and the
development and use of
DLLs are must-reads for
consulting and commercial
developers. The explanations
and examples are simple, and
provide a solid basis for fur-
ther development.
39 February 1998 Delphi Informant
The chapter detailing drag-
and-drop through the
Windows Shell interface,
one of the holdovers from
the first edition, now acts as
a “point” to the following
chapter’s counterpoint:
implementation of a drag-
and-drop interface with
OLE/ActiveX (whose code
represents a much more ele-
gant solution than that of
its predecessor). The chap-
ter also offers an excellent
introduction to OLE tech-
nology. The author suggests
additional readings to help
develop a deeper under-
standing of the topic.

John Penman contributed
one new chapter in addition
to the two chapters brought
from the older book. His
area of interest is in develop-
ing Internet applications
using the Winsock API. The
lead chapter develops
CsSocket, a wrapper compo-
nent for Windows Sockets.
This offers a good introduc-
tion to Winsock. The
CsSocket component is used
as the basis for the two fol-
lowing chapters, which
describe a pair of FTP com-
ponents providing both
client and server functionali-
ty. The FTP client was ini-
tially presented in the first
edition; utilizing the CsSocket
component, it can stand
alone or be added to other
projects. Penman adds the
counterpart to the client
component in a new chapter
that details the development
of an FTP server component,
encapsulating the server side
of the FTP protocol.

Jon Shemitz offers three
chapters — one with co-
author Ed Jordan — which
are unrelated in content, but
go a long way toward
demonstrating the depths to
which Delphi can be
plumbed in application
development.

The first chapter in the set
details the building of a
Fractal generator. The math-
ematics and use of assembler
functions make this a good
Sunday afternoon project
that will result in a broader
skill set. Chapter 9, the col-
laborative effort of the two
authors, is a collection of
ideas and problem solvers on
various topics ranging from
the inner workings of
TPersistent descendants, to
how to build a Delphi appli-
cation that acts as its own
setup program, to streaming
data to the Clipboard. The
chapter is a good read filled
with possibilities that the
programmer can file away
until needed.

A new chapter entitled
“Models, Views, and Frames”
is one argument for adding
this volume to your library
even if you possess the earlier
edition. Mr Shemitz’s clear
explanation of utilizing
frames and views to embed
one form inside another
transmits the insight needed
to create a truly modern user
interface. The implementa-
tion of setup wizards and
property sheets, both affect-
ing the same data objects, is a
complex endeavor. By lead-
ing the reader through sev-
eral implementation choices
(and the traps associated
with each) the author indi-
cates which methods pro-
vide the most elegant solu-
tion. This chapter takes con-
siderable study time, but the
results are well worth the
work.

The remaining chapters are
fundamentally unchanged
from the previous publica-
tion. Terence Goggin opens
up the Math Unit, and shows
some useful functionality that
lacks documentation and
popular usage. Bugs are iden-
tified, and a clever way of
handling dynamic data and
static arrays is explained in
the course of developing a
component that adds statisti-
cal functions to a project.
Goggin also introduces build-
ing dynamic user interfaces.
A single chapter by Richard
Haven explores Hierarchical

TextFile
Data and its representation. Working this concept from the
example of data contained in a relational database, the author
offers numerous techniques for viewing and navigation. Like a
few other chapters in the book, this topic requires dedicated
study, and has a limited and specialized audience.

Don Taylor writes the final four chapters in a style he pio-
neered with Delphi Programming Explorer. Readers are re-
introduced to Ace Breakpoint, a private investigator who
combines adventure noir with development exploration. This
unique text intersperses Mr Breakpoint’s adventures with
pages from his “casebook” of programming topics, which can
be integrated into a programmer’s repertoire: packing dBASE
and Paradox tables, floating toolbars, DLLs, and the
Windows 95 core, among others. While the narrative may be
an acquired taste, readers will find much useful information.

The CD-ROM that accompanies the book contains all the
examples listed in each chapter. The code compiled without a
problem in Delphi 3 — an improvement from the earlier edi-
tion, whose code contained many difficulties and errors associ-
ated with the transition from Delphi 1 16-bit to Delphi 2 32-
bit. The CD’s installation program, which moves projects to the
hard disk for compilation purposes, gives the reader a choice of
which demo programs to include.

A programmer’s library typically consists of two shelves: the
“tutorial and methods” collection, and the How to, Secrets of,
and High Performance collection. Books on this second shelf
help programmers solve problems and add depth to their
programming skills. If Kick Ass Delphi Programming is already
on that shelf, the reader should review the new material to
determine if it warrants the purchase price. Otherwise, this
well written and well organized collection of advanced devel-
opment information deserves a place in your programmer’s
library.

— Warren Rachele

High Performance Delphi 3 Programming, by Don Taylor, et al.,
Coriolis Group Books, 14455 N. Hayden Road, Suite 220,
Scottsdale, AZ 85260,
(602) 483-0192, http://www.coriolis.com.

ISBN: 1-57610-179-7
Price: US$49.99
(635 pages, CD-ROM)
40 February 1998 Delphi Informant

http://www.coriolis.com

File | New
Directions / Commentary
Packages
The Potentials and the Pitfalls

The introduction of packages was one of the major changes in Delphi 3. Before packages, if you wanted
to work with a particular subset of the VCL, your options were somewhat limited. Of course, you could

create and load different versions of complib.dcl. However, this was a hassle, and rather wasteful of disk
space. With packages, those hassles are gone. Unfortunately, they’ve introduced a new set of problems.
But let’s start with the good news.
You Gotta Take the Good …
In Delphi 3, if you select Component |
Install Packages, you see all the packages
currently installed and the various
options you have: You can add a single
package or a collection of packages,
remove packages, edit packages, and
examine the components in a package.
If you encounter a problem or conflict
with a particular package, you can sim-
ply de-select it by clicking the check
box. With the Package Editor you can
create your own new packages, and with
the Package Collection Editor you can
create collections of packages to distrib-
ute to other developers.

Delphi 3 Help points out that “design-
time packages ... simplify the tasks of
distributing and installing custom com-
ponents.” That’s true. When I first
installed third-party component
libraries in Delphi 3, I was amazed at
how smoothly the process went. Once
the setup program was finished and I
fired up Delphi 3, the new components
appeared, already installed on the
palette. What a difference from Delphi
1 and 2!

… with the Bad
Unfortunately, I soon encountered
problems: incompatibilities between
packages from some of the third-party
tool and component producers. These
conflicts occurred because one product
depended upon components in the
other, but was using a different version
of those components than the one
41 February 1998 Delphi Informant
installed on my system. I received the
following not-so-informative message: A
device attached to the system is not
working properly and the package can-
not be installed (or something to that
effect). Because I knew what I had
installed recently, I was able to un-check
one or more packages, getting one to
work, but not both.

Gradually, some sanity has emerged in
how to work with packages. But this
has more to do with the third-party
developers’ commitment to correcting
the problem than with Borland’s lead-
ership. Thanks to developers such as
Ray Konopka, component writers now
have some guidelines to help them
avoid these conflicts. In Developing
Custom Delphi 3 Components [Coriolis
Group Books, 1997], Mr Konopka
imparts some excellent advice to the
developer who will be distributing
components in packages:

Always use a unique prefix in nam-
ing your components to avoid con-
flicts with components created by
other developers.
Make sure your package names are
unique.
Never put property or component
editors in run-time packages; these
belong only in design-time pack-
ages.
Make certain that the registration
procedures are not in the compo-
nent unit (as we’ve become accus-
tomed to doing), but in a separate
registration unit. Otherwise, your
component could also be inadver-
tently installed by someone using a
property editor that is dependent
upon it, but written and distributed
by someone else.

Leading vendors such as TurboPower
are now aware of the problems that can
arise with packages, and are taking
aggressive steps to shield us from them.
That particular company, for example,
is giving each new product release a
slightly different package name from its
predecessor to avoid version conflicts. I
greatly appreciate such thoughtfulness.
However, I can’t help but wonder if all
this could have been avoided in the
beginning if Borland had put as much
energy into warning us about the pit-
falls of packages as they did touting
their advantages. What do you think?
Let me know your views, experiences,
problems, and solutions in working
with packages. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number
of articles in various technical journals.
Using Delphi, he specializes in writing cus-
tom components and implementing multi-
media capabilities in applications, particu-
larly sound and music. You can reach Alan
via e-mail at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	SureHand Software Offers ViCiouS Pro
	Business Solutions Introduces Client/Server Version of Purchase Manager
	Blinkinc Ships Shrinker 3.2
	Quality Software Components Releases GP-Version 3.5
	Skyline Tools Releases ImageLib Corporate Suite 3.0
	EFD Announces HyperString 2.0 for Delphi

	Delphi News
	Borland Announces Delphi Enterprise
	Borland Reports Second Quarter Fiscal 1998 Results
	Arabic Language Support for Delphi 3
	SAP Announces Open BAPI Network
	Borland Signs Letter of Intent, Releases C ++ Builder Client/Server Suite

	On the Cover
	Importing an Existing ActiveX Control
	Creating ActiveX Controls from VCL Controls
	Anatomy of an ActiveX Control
	Property Pages
	Register the Page
	ActiveX from Scratch
	Registering the ActiveX Control
	ActiveForms
	Creating an ActiveForm
	Conclusion

	Informant Spotlight
	The Scripting Engine
	Getting Started
	Starting the Engine
	Parsing the Script
	Resetting the Engine
	Firing a Script Subroutine
	Exposing Application Objects to the Script
	Testing
	Conclusion
	Begin Listing One — ACTIVESCP.PAS
	Begin Listing Two — SCRIPTSITE.PAS

	DBNavigator
	Code Completion
	Argument Value Lists
	Code Templates
	Creating Your Own Templates
	Tooltip Expression Evaluation
	Controlling Code Insight
	Conclusion

	OP Tech
	The New Component Palette Model
	Using Non-package-based Components in Delphi 3
	Running with Packages
	Conclusion

	On The Net
	Delphi’s Web Components
	Web Graphics
	Delivering Graphics
	Building the Web Module
	Generic Picture Delivery
	Maintaining Schemes
	Demonstration
	Conclusion

	New & Used
	The Many Ways to Zip
	Powerful and Flexible Non-visual Components
	Power, Flexibility, and Ease of Use
	Data Security with LockBox
	Low or High: Choose Your Level
	Flowing with the Stream
	Other Common Features: Quality We’ve Come to Expect
	Conclusion
	Fact File
	Begin Listing Three — Unit ConfZipU;

	TextFile
	File I New

